JRLメンバーとなる様々な方法があります

常勤職員

産総研常勤職員の採用情報はこちらに掲載されています。通常年2回、春と秋に公募が行われます。JRLは情報・人間工学領域に所属しているため、同領域の採用情報をご確認ください。応募を検討されている場合は、事前にご連絡いただくことを推奨します。

客員研究員

客員研究員としての滞在を希望される場合は、ご連絡ください。
JRLはJSPSフェローをホストすることができますので、JSPS特別研究員JSPS外国人特別研究員JSPS外国人招へい研究者への応募を希望される場合はご連絡ください。

契約職員

ポスドクやテクニカルスタッフ等の契約職員を募集している場合があります。採用情報はこちらのページの情報・人間工学領域の部分で確認できます。

学生

(筑波大学ヒューマノイド研究室はこちら)

学生は産総研技術研修生としてJRLに在籍することができます。また優秀な技術研修生は産総研リサーチアシスタントとして雇用される場合があります。どの大学の学生も技術研修生としてJRLに在籍することが可能ですが、以下の大学についてはJRL研究者の指導の元、で修士や博士の研究を行い、学位を取得することが可能です。
  • 筑波大学
    常勤職員の何名かは筑波大学教員の身分を持っているため、筑波大学大学院に入学した修士や博士の学生がJRLで研究を行い、学位を取得することが可能です。ヒューマノイド研究室筑波大学連携大学院の制度に基づいてJRLに設置されている研究室になります。
  • モンペリエ大学
    モンペリエ大学の博士学生はJRLで博士の研究を行うことができます。JRLはフランス国外でモンペリエ大学博士学生が研究を行うことが可能な唯一のラボです。
  • その他のフランス大学
    他のフランス大学の学生も博士の研究の一部をJRLで実施することが可能です。詳細はお問い合わせください。

募集中の研究テーマ

現在、以下の研究テーマに取り組む学生を募集しています。JRLで学位取得のための研究、またはその一部を行うことを希望される場合はご連絡ください。
テーマ名 概要 修士/博士 必要な基礎知識
Adaptive torque control Usually the control of robots rely on precise models, however, these can be unavailable or drift over time. Adaptive control techniques will be expected to correct for these modeling errors and compensate for them during the motion. The student will be working on our humanoid robots. master (possibility to extend to PhD)

Preferred: C++, control theory, multibody dynamics

Required: basic calculus, spoken English language

Humanoid robots force control for multi-contact locomotion Locomotion control of legged robots requires force control that relies usually on contact force sensors, however humanoid or legged robot may use parts of their body that are not equipped with these sensors such as elbows and knees. In this work the student will develop and test a control of this kind of contact. Master (possibility to extend to PhD)

Preferred: C++, ROS, control theory, multibody mechanics.

Required: basic geometry and calculus, spoken English language

Safe training of neural networks on real robotic platforms In most cases the training of neural networks to control the motion of humanoid and legged robots, happen in numerical simulation and then transferred to the real robot. In this work the student will design a framework to train neural networks directly on the real robot. They need to ensure the safety and the autonomy of the learning pipeline. Master/PhD

Preferred: C++, Deep learning, ROS, multibody mechanics.

Required: spoken English language

Direct Visual Servoing with optimal robot trajectories
  • Robot motion control from camera image brightness
  • Accuracy < 1 mm but 3D trajectories are not ideal
  • Goals:
    • Implement damping control near singularities
    • Multi-objective optimization to constrain the trajectory
    • Online selection of the camera field-of-view maximizing the motion perceptibility
  • Related project: DVS-straight
Master/PhD C++ programming, mathematical background
Contact-Ready Robust Hydraulic Actuator for Mobile Robots To vastly increase the use of robots, tasks with contacts are inevitable. In this research, we aim to develop robust and force sensitive hydraulic actuators to realize robust and dexterous manipulation on mobile robots. Master Mechanical design, 3D CAD, Basic fluid dynamics, Basic mechatronics
Optimal structural design and structural force sensing for robot systems Force sensitivity is an important feature for robots that co-exist with humans. However, use of torque sensor was limited from increase in weight and size, and lowering of resonance frequency. In this research, we study force sensing technique using structural materials and optimization of sensitivity and structural robustness. Master Mechanical design, Basic electronics, Basic numerical optimization
AI-aided teleoperation to achieve seamless telepresence for non-experts
  • Identify objects of interest in the visible field of view without prior knowledge
  • Identify major affordances and display them as AR visual aids
Master C++, Python, basic familiarity with Linux, some knwoledge related to computer vision
Navigation and control of a mobile robot with mounted arm
  • Develop autonomous/teleoperated navigation for a mobile robot
  • Develop controller for robotic arm mounted on the mobile robot to perform real-world tasks
Master C++, Python, ROS, basic familiarity with Linux, some knowledge of robotics
Responsive multi-contact locomotion
  • Passing through narrow space using not only legs but also arms freely
  • Efficient search for contact transition and whole-body motion
  • Efficient solver for non-linear model predictive control
Master/PhD Dynamics, Control theory, Optimization, Graph search, Programming(c++), (Machine learning)
Data-driven quadruped controller toward outdoor exploration
  • Data-driven controller for quadruped robot to traverse uneven outdoor environments
  • Multimodal sensor fusion robust to environmental changes
  • SimToReal that requires no parameter fine-tuning
Master Reinforcement learning, RNN, DNN, Programming(python, c++)
Construction and Retrieval of Multi-contact Motion Library for Humanoid Robot We offer research about the methodology of construction and retrieval of motion library to achieve on-site multi-contact motion planning for a humanoid robot. We want to clarify the structure of the motion library, which can preserve the feasible whole-body motion of a humanoid robot. We also want to develop the online adaptation method to modify preserved motion to satisfy kinematics and dynamics constraints in an unknown environment. PhD Basic knowledge of robotics, Software development by C++ and Python with ROS
Event-based visual registration to 3D point clouds
  • Event cameras: new vision sensors emitting asynchronously per pixel intensity variations
  • Low latency, high dynamic range
  • Goals:
    • Design visual information models and multi-modal cost/loss for alignment
    • High processing frequency to allow highly dynamic 3D tracking
    • Explore non-conventional optics to solve the registration problem
  • Related publication: hal-04519122
Master/PhD C++ / python programming, mathematical background in 3D geometry and optimization
Vision-based deformation of human body deformation for safe robot interaction
  • Understanding the impact of a robot physical contact with a human is hard
  • Robot visual perception offers a potential of thoroughness and accuracy for such task
  • Goals:
    • Leverage physics-based modeling to train visual spatio-temporal features
    • Frugal and real-time processing
    • Integrate in human robot physical interaction (e.g. assistive robotics)
Master/PhD mathematical and mechanical background in 3D geometry, optimization, training, C++ / python programming
Human body visual tracking leveraging biomechanical modelling
  • State-of-the-art biomechanical human tracking is marker-based optical motion capture
  • Markerless human visual trackers are more flexible but with puppet-like models
  • Goals:
    • Leverage biomechanical models in markerless human visual tracking
    • Improve human dynamics prediction
    • Integrate in human robot physical interaction (e.g. load carrying)
Master mathematical and mechanical background, 3D geometry, optimization, training, C++ / python programming