産総研  > 組織 > 電子光基礎技術研究部門 > メゾスコピック材料グループ

グループ概要


メゾスコピック材料グループ

研究内容
塗布プロセスに適合する電子材料の開発、および、これら材料の特質に立脚した革新的プロセス技術や高度な計測・評価技術の開発に取り組んでいるほか、材料機能の高付加価値化(高生体親和性、抗菌・抗ウイルス性等)に向けた開発や、開発加速のためのマテリアルズインフォマティクス・プロセスインフォマティクス活用基盤の構築に取り組んでいます。

グループHP


重点課題
• 有機半導体、有機強誘電体、二次元層状材料、金属微粒子、光機能性分子の新機能開拓と塗布プロセス適応化
• 塗布型電子デバイスの高性能化・性能平準化・高耐久化を可能とする先進塗布プロセスの開発と多様な材料への汎用化
• 塗布型電子デバイスの高品質化に資する先端デバイス評価技術の開発、およびこれを応用した高度な生体物質計測技術の開発



主要な成果
1 有機強誘電体材料技術

有機物として世界最高の分極(30 μC / cm2)を実現



2 単結晶性有機半導体薄膜印刷技術

ダブルショット・インクジェット印刷法により、アモルファスシリコンの移動度を大幅に超える単結晶性有機TFTを実現



3 超微細配線印刷技術

紫外光照射でパターニングし、銀ナノ粒子を高濃度に含む銀ナノインクを表面コーティングするだけで、超高精細(最小線幅0.8マイクロメートル)な銀配線パターンを製造できる印刷技術「スーパーナップ(SuPR-NaP;表面光反応性ナノメタル印刷)法」



4 デバイス動作可視化技術

トランジスタ内のマイクロメートルスケールの電荷の動きを最高50 nsの時間分解能で可視化するゲート変調イメージング技術


保有技術
有機合成技術、真空製膜技術、塗布製膜技術(インクジェット、ブレードコート、スピンコート)、熱分析技術、X線構造解析技術、電気特性評価技術(トランジスタ特性、インピーダンス測定、強誘電分極特性)、電気化学測定技術、顕微紫外・可視・赤外分光測定技術、顕微ラマン分光測定技術、蛍光分光測定技術、変調イメージング技術、走査プローブ顕微鏡測定技術

主要特許・論文
  1. Sunami et al., "Unveiling High Electro-Optic Performance in a Proton-p-Electron-Coupled Ferroelectric Crystal" Adv. Electron. Mater. 10, 2400346 (2024).
  2. Higashino et al., "Effects of Thiophene-Fused Isomer on High-Layered Crystallinity in π-Extended and Alkylated Organic Semiconductors" Chem. Mater. 36,848 (2024).
  3. Tsutsumi et al., "Visualization of invisible cell-death sign by electric-double-layer modulation" Biosens. Bioelectron.: X ,14, 100390 (2023).
  4. Sonoda et al., "Synthesis, characterization, and fluorescence properties of a series of trifluoromethylated diphenylhexatrienes" J. Fluor. Chem. 267, 110110 (2023).
  5. Horiuchi et al., "Competition of Polar and Antipolar States Hidden Behind a Variety of Polarization Switching Modes in Hydrogen-Bonded Molecular Chains" Mater. Horiz. 10, 2149 (2023).
  6. Kurosu et al., "Label-free visualization of nano-thick biomolecular binding by electric-double-layer modulation" Sens. Actuators B Chem. 382, 133548 (2023).
  7. Sonoda et al., "Singlet Fission in Solid 1,6-Diphenyl-1,3,5-hexatriene Dicarboxylic Acids and Esters: Effects of Meta and Para Substitution" J. Phys. Chem. C 126, 8742 (2022).
  8. Horiuchi et al., "Ferroelectric Polarization of Hydrogen-Bonded Chains in Phenols: Hydroxyl Flip-Flop versus Proton-Transfer mechanisms" J. Mater. Chem. C 10, 10099 (2022).
  9. Higashino et al., "Small-molecule ambipolar transistors" Phys. Chem. Chem. Phys. 24, 9770 (2022).
  10. Sonoda, "Chain-Length-Dependent Photophysical Properties of a,w-Di(4-pyridyl)polyenes: Effects of Solvent Polarity, Hydrogen Bond Formation, Protonation, and N-Alkylation" J. Fluoresc. 32, 95 (2022).
  11. Horiuchi et al., "Large polarization and record-high performance of energy-storage induced by a phase change in organic molecular crystals" Chem. Sci., 12, 14198 (2021).
  12. Horiuchi et al., "Single-component organic molecular ferroelectrics based on disk- or wheel-like rotation" J. Mater. Chem. C, 9, 13739 (2021).
  13. Higashino et al., "Architecting Layered Crystalline Organic Semiconductors Based on Unsymmetric π-Extended Thienoacenes" Chem. Mater. 33, 7379 (2021).
  14. Tsutsumi et al., "Precise and rapid solvent-assisted geometric protein self-patterning with submicron spatial resolution for scalable fabrication of microelectronic biosensors" Biosens. Bioelectron. 177, 112968 (2021).
  15. Tsutsumi et al., "High-Throughput Nanoparticle Chemisorption Printing of Chemical Sensors with High-Wiring-Density Electrodes" Electron. Mater. 2, 72 (2021).
  16. S. Horiuchi et al., "Metaelectric multiphase transitions in a highly polarizable molecular crystal" Chem. Sci. 11, 6183 (2020).
  17. S. Horiuchi et al., "Hydrogen-Bonded Small-Molecular Crystals Yielding Strong Ferroelectric and Antiferroelectric Polarizations" J. Phys. Soc. Japan 89, 051009 (2020).
  18. T. Higashino et al., "Direct Preparation of Mixed Self-assembled Monolayers Based on Common-substructure-tailored Phosphonic Acids for Fine Control of Surface Wettability" Chem. Lett. 49, 1302 (2020).
  19. T. Higashino et al., "Architecting layered molecular packing in substituted benzobisbenzothiophene (BBBT) semiconductor crystals" CrystEngComm 22, 3618 (2020).
  20. Y. Sonoda et al., "Crystal Structures and Fluorescence Spectroscopic Properties of a Series of alpha,omega-Di(4-pyridyl)polyenes: Effect of Aggregation-Induced Emission" ChemPlusChem 85, 1968 (2020).
  21. H. Tachibana et al., "Hole transport dithiophene-benzene copolymer for electroluminescence devices" Jpn. J. Appl. Phys. 59, SCCA01 (2020).
  22. S. Horiuchi et al., "Coexistence of normal and inverse deuterium isotope effects in a phase-transition sequence of organic ferroelectrics" RSC Adv. 9, 39662 (2019).
  23. S. Horiuchi et al., "Hydrogen-Bonded Architectures and Field-Induced Polarization Switching in Bridged Bis(benzimidazole) Crystals" Cryt. Growth Des. 19, 328 (2019).
  24. T. Higashino et al., "Bilayer-type Layered Herringbone Packing in 3-n-Octyl-9-phenyl-benzothieno[3,2-b]naphtho[2,3-b]thiophene" Chem. Lett. 48, 453 (2019).
  25. T. Higashino et al., "Di- and tetramethoxy benzothienobenzothiophenes: substitution position effects on the intermolecular interactions, crystal packing and transistor properties" New J. Chem. 43, 884 (2019).
  26. H. Tachibana et al., "Highly concentrated dispersion of methyl-terminated germanane by liquid exfoliation" Jpn. J. Appl. Phys. 58, 105002 (2019).
  27. H. Tachibana et al., "Fabrication of graphite by pulsed light irradiation of network silicon bearing anthryl groups" Thin Solid Films 686, 137422 (2019).
  28. H. Tachibana et al., "Liquid exfoliation of ethyl-terminated layered germanane" Jpn. J. Appl. Phys. 58, SIIB21 (2019).
  29. H. Tachibana et al., "Thin-film transistors of rhodamine end-capped oligothiophene" Jpn. J. Appl. Phys. 58, SBBG09 (2019).