Menbers

Personal History

Dr. Keisuke Shibuya

Curriculum Vitae

March 2001
B.S., Physics Dept. of Physics, Tokyo Institute of Technology
March 2003
M.S., Material Science, Dept. of Innovative and Engineered Materials, Tokyo Institute of Technology
March 2006
Ph.D., Material Science, Dept. of Advanced Materials Science, The University of Tokyo
April 2006
Postdoctoral Researcher, the Institute for Solid State Physics, The University of Tokyo
October 2006
Alexander von Humboldt Research Fellow, Institute of Solid State Research, Juelich Research Center, Germany
April 2008
Postdoctoral Researcher, Institute of Solid State Research, Juelich Research Center
March 2009
Special Postdoctoral Researcher, Functional Superstructure Team
Cross-Correlate Materials Research Group (CMRG), Advansed Science Institute (ASI), RIKEN
April 2012
Researcher, Correlated Electronics Group
Electronics and Photonics Research Institute
National Insititute of Advanced Industrial Science and Technology (AIST)
October 2017
Senier Researcher, Correlated Electronics Group
Electronics and Photonics Research Institute
National Insititute of Advanced Industrial Science and Technology (AIST)

Research Area

Solid state physics, Oxide thin films, Oxide electronics

Research Achievements

- Observation of filed-effect induced metal-insulator transition at oxide interface
- Fabrication of single-crystal layered perovskite thin film
- Demonstration of correlation between defect density and resistive switching properties - Modulation of metal-insulator transition temperature in VO2

Publications

  1. Y. Tomioka, N. Shirakawa, K. Shibuya, and I. H. Inoue, “Enhanced superconductivity close to a non-magnetic quantum critical point in electron-doped strontium titanate”, Nature Communications 10, 738 (2019).
  2. K, Shibuya, Y. Atsumi, T. Yoshida, Y. Sakakibara, M. Mori, and A. Sawa, “Silicon waveguide optical modulator driven by metal-insulator transition of vanadium dioxide cladding layer”, Optics Express 27, 4147 (2019).
  3. K. Shibuya and A. Sawa,“Raman scattering of epitaxial vanadium dioxide films with low-temperature monoclinic phase”, Journal of Applied Physics 122, 015307 (2017).
  4. K. Shibuya and A. Sawa, “Electrolyte gating on oxygen-deficient VO2 thin films”, Journal of Nanoelectronics and Optoelectronics 5, 571 (2016).
  5. K. Miyazaki, K. Shibuya, M. Suzuki, K. Sakai, J. Fujita, and A. Sawa, “Chromium-niobium co-doped vanadium dioxide films: large temperature coefficient of resistance and practically no thermal hysteresis of the metal-insulator transition”, AIP Advances 6, 055012 (2016).
  6. K. Shibuya and A. Sawa, “Modulation of Metal-Insulator Transition in VO2 by Electrolyte Gating-Induced Protonation”, Advanced Electronic Materials 2, 1500131 (2016).
  7. K. Shibuya and A. Sawa, “Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition”, AIP Advances 5, 107118 (2015).
  8. K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, and A. Sawa, “High temperature coefficient of resistance of low-temperature-grown VO2 films on TiO2-buffered SiO2/Si (100) substrates”, Journal of Applied Physics 118, 055301 (2015).
  9. M. Nakano, D. Okuyama, K. Shibuya, M. Mizumaki, H. Ohsumi, M. Yoshida, M. Takata, M. Kawasaki, Y. Tokura, T. Arima and Y. Iwasa, “Distinct substrate effect on the reversibility of the metal-insulator transitions in electrolyte-gated VO2 thin films”, Advanced Electronic Materials 1, 1500093 (2015).
  10. D. Okuyama, K. Shibuya, R. Kumai, Y. Kitagawa, T. Suzuki, Y. Yamasaki, H. Nakao, Y. Murakami, M. Kawasaki, Y. Taguchi, T. Arima, and Y. Tokura, “X-ray study of metal-insulator transitions induced by W-doping and photoirradiation in VO2 films”, Physical Review B 91, 064101 (2015).
  11. K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, and A. Sawa, “Correlation between thermal hysteresis width and broadening of metal-insulator transition in Cr and Nb doped VO2 films”, Japanese Journal of Applied Physics 53, 235123 (2014).
  12. K. Shibuya and A. Sawa, “Epitaxial growth and structural transition of VO2/MgF2(001)”, Japanese Journal of Applied Physics 53, 05FF03 (2014).
  13. D. Okuyama, M. Nakano, S.Takeshita, H. Ohsumi, S. Tardif, K. Shibuya, T. Hatano, H. Yumoto, T. Koyama, H. Ohashi, M. Takata, M. Kawasaki, T. Arima,Y. Tokura, and Y. Iwasa, “Gate-tunable gigantic lattice deformation in VO2”, Applied Physics Letters 104, 023507 (2014).
  14. M. Nakano, K. Shibuya, N. Ogawa, T. Hatano, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Infrared-sensitive electrochromic device based on VO2”, Applied Physics Letters 103, 153503 (2013).
  15. K. Shibuya, J. Tsutsumi, T. Hasegawa, and A. Sawa, “Fabrication and Raman scattering study of epitaxial VO2 films on MgF2 (001) substrates”, Applied Physics Letters 103, 021604 (2013).
  16. M. Kubota, K. Shibuya, Y. Tokunaga, F. Kagawa, A. Tsukazaki, Y. Tokura, and M. Kawasaki, “Systematic control of stress-induced anisotropy in pseudomorphic iron garnet thin films”, J. Magn. Magn. Mater. 339, 63 (2013).
  17. M. Kubota, A. Tsukazaki, F. Kagawa, K. Shibuya, Y. Tokunaga, M. Kawasaki, and Y. Tokura, “Stress-induced perpendicular magnetization in epitaxial iron garnet thin films”, Appl. Phys. Exp. 5, 103002 (2012).
  18. M. Nakano, K. Shibuya, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Field-effect control of first-order metal-insulator transition”, Nature 487, 459 (2012).
  19. J. S. Lee, K. Shibuya, M. Kawasaki, and Y. Tokura,“Optical investigation of metal-insulator transitions in V1-xWxO2 (0 < x < 0.33)”, Phys. Rev. B 85, 155110 (2012).
  20. E. Sakai, K. Yoshimatsu, K. Shibuya, H. Kumigashira, E. Ikenaga, M. Kawasaki, Y. Tokura, and M. Oshima,“Competition between instabilities of Peierls transition and Mott transition in W-doped VO2 thin films”, Phys. Rev. B 84, 195132 (2011).
  21. K. Shibuya, D. Okuyama, R. Kumai, Yamasaki, H. Nakao, Y. Murakami, Y. Taguchi, T. Arima, M. Kawasaki, and Y. Tokura,“An x-ray induced insulator-metal transition in a thin film of electron-doped VO2”, Phys. Rev. B 84, 165108 (2011).
  22. K. Shibuya, M. Kawasaki, and Y. Tokura,“Metal-insulator transitions in TiO2/VO2 superlattices”, Phys. Rev. B, 82, 205118 (2010).
  23. K. Shibuya, M. Kawasaki, and Y. Tokura, “Metal-insulator transition in epitaxial V1-xWxO2 (0 < x < 0.33) thin films”, Appl. Phys. Lett. 96, 022102 (2010).
  24. K. Shibuya, R. Dittmann, S. Mi, and R. Waser, “Impact of defect distribution on resistive switching characteristics of Sr2TiO4 thin films”, Advanced Materials, 22, 411 (2010).
  25. K. Shibuya, S. Mi, C.-L. Jia, P. Mueffels, and R. Dittmann, “Sr2TiO4 layered perovskite thin films grown by pulsed laser deposition”, Appl. Phys. Lett. 92, 241918 (2008).
  26. T. Ohnishi, K. Shibuya, T. Yamamoto, and M. Lippmaa, “Defects and transport in complex oxide thin films”, J. Appl. Phys. 103, 103703 (2008).
  27. K. Shibuya, T. Ohnishi, T. Uozumi, T. Sato, K. Nishio, and M. Lippmaa, “Observation of SrTiO3 in-gap states by depletion mode field effect”, Appl. Phys. Lett. 92, 032109 (2008).
  28. K. Shibuya, T. Ohnishi, M. Lippmaa, and M. Oshima, “Metallic conductivity at the CaHfO3/SrTiO3 interface”, Appl. Phys. Lett. 91, 232106 (2007).
  29. K. Shibuya, T. Ohnishi, T. Sato, and M. Lippmaa, “Metal-insulator transition in SrTiO3 induced by field effect”, J. Appl. Phys. 102, 083713 (2007).
  30. T. Sato, K. Shibuya, T. Ohnishi, K. Nishio, and M. Lippmaa, “Fabrication of SrTiO3 Field Effect Transistors with SrTiO3-δ Source and Drain Electrodes”, Jpn. J. Appl. Phys. 46, L515 (2007).
  31. T. Uozumi, K. Shibuya, T. Ohnishi, T. Sato, and M. Lippmaa, “Growth and characterization of epitaxial DyScO3 films on SrTiO3”, Jpn. J. Appl. Phys. 45, L830 (2006).
  32. M. Takizawa, H. Wadati, K. Tanaka, M. Hashimoto, T. Yoshida, A. Fujimori, A. Chikamatsu, H. Kumigashira, M. Oshima, K. Shibuya, T. Mihara, T. Ohnishi, M. Lippmaa, M. Kawasaki, H. Koinuma, S. Okamoto, and A. J. Millis, “Photoemission from buried interfaces in SrTiO3/LaTiO3 superlattices”, Phys. Rev. Lett. 97, 057601 (2006).
  33. K. S. Takahashi, M. Gabay, D. Jaccard, K. Shibuya, T. Ohnishi, M. Lippmaa and J.-M. Triscone, “Local switching of two-dimensional superconductivity using the ferroelectric field effect”, Nature 441, 195 (2006).
  34. K. Shibuya, T. Ohnishi, T. Uozumi, T. Sato, K. Nakajima, Y. Chikyow, H. Koinuma, M. Kawasaki, and M. Lippmaa, “Field-effect modulation of the transport properties of nondoped SrTiO3”, Appl. Phys. Lett. 88, 212116 (2006).
  35. K. Shibuya, T. Ohnishi, T. Uozumi, H. Koinuma, and M. Lippmaa, “An in situ transport measurement of interfaces between SrTiO3 (100) surface and an amorphous wide-gap insulator”, Appl. Surf. Sci. 252, 8147 (2006).
  36. K. Shibuya, T. Ohnishi, T. Uozumi, H. Koinuma, and M. Lippmaa, “The effect of annealing on SrTiO3 field-effect transistor devices” Thin Solid Films 486, 195 (2005).
  37. T. Mihara, K. Shibuya, T. Ohnishi, H. Koinuma, and M. Lippmaa, “Transport properties of ultrathin oxide films and nanostructures”, Thin Solid Films 486, 63 (2005).
  38. K. Shibuya, T. Ohnishi, M. Kawasaki, H. Koinuma, and M. Lippmaa, “Single crystal SrTiO3 field-effect transistors with an atomically flat amorphous CaHfO3 gate insulator”, Appl. Phys. Lett. 85, 425 (2004).
  39. K. Shibuya, T. Ohnishi, M. Kawasaki, H. Koinuma, and M. Lippmaa, “Domain structure of epitaxial CaHfO3 gate insulator films on SrTiO3”, Appl. Phys. Lett. 84, 2142 (2004).
  40. K. Shibuya, T. Ohnishi, M. Kawasaki, H. Koinuma, and M. Lippmaa, “Metallic LaTiO3/SrTiO3 superlattice films on the SrTiO3 (100) surface”, Jpn. J. Appl. Phys. 43, L1178 (2004).
  41. T. Ohnishi, K. Shibuya, M. Lippmaa, D. Kobayashi, H. Kumigashira, M. Oshima, and H. Koinuma, “Preparation of thermally stable TiO2-terminated SrTiO3 (100) substrate surfaces”, Appl. Phys. Lett. 85, 272 (2004).
  42. K. S. Takahashi, D. Matthey, D. Jaccard, J.-M. Triscone, K. Shibuya, T. Ohnishi, and M. Lippmaa, “Electrostatic modulation of the electronic properties of Nb-doped SrTiO3 superconducting films”, Appl. Phys. Lett. 84, 1722 (2004).
  43. K. Shibuya, T. Ohnishi, M. Kawasaki, H. Koinuma, and M. Lippmaa, “Growth and structure of wide-gap insulator films on SrTiO3”, Solid State Electronics 47, 2211 (2003).