Research articles

【2023】
Isolation and characterization of novel naturally occurring sophorolipid glycerides.
Kobayashi Y, Li Q, Ushimaru K, Hirota M, Morita T, Fukuoka T.
Bioresource Technology Reports 2023 Mar 16;22, 101399.

Easy and Scalable synthesis of a lignosulfonate-derived thermoplastic with improved thermal and mechanical properties.
Ushimaru K, Nakamura T, Fukuoka S, Takahashi K, Sakakibara K, Koga M, Watanabe R, Morita T, Fukuoka T.
Composites Part B: Engineering 2023 Feb 22;255, 110628.

Accelerated degradation of plastic products via yeast enzymetreatment.
Kitamoto H, Koitabashi M, Sameshima-Yamashita Y, Ueda H, Takeuchi A, Watanabe T, Sato S, Saika A, Fukuoka T.
Scientific Reports 2023 Feb 10;13, 2389.


【2022】
First direct evidence for direct cell-membrane penetrations of polycationic homopoly(amino acid)s produced by bacteria.
Takeuchi Y, Ushimaru K, Kaneda K, Maruyama C, Ito T, Yamagata K, Ogasawara Y, Katano H, Kato Y, Dairi T, Hamano Y.
Communications Biology 2022 Oct 26;5, 1132.

Synthesis of mannosylerythritol lipid analogues and their self-assembling properties, recovery effects on damaged skin cells, and antibacterial activity.
Kondo T, Yasui C, Miyajima I, Banno T, Asakura K, Fukuoka T, Ushimaru K, Koga M, Saika A, Morita T, Takahashi Y, Hayashi C, Igarashi M, Takahashi D, Toshima K.
Chemistry – A European Journal 2022 Oct 4;28(55):e202201733.

Improvement of oil degradation and MEL production in a yeast strain, Pseudozyma tsukubaensis, by translation elongation factor 1 promoter-driven expression of a lipase.
Saika A, Koike H, Yamamoto S, Sugahara T, Kawahara A, Sogabe A, Morita T.
J Oleo Sci. 2022 Sep 1;71(9):1421-1426.

Reversible hydrogenase activity confers flexibility to balance intercellular redox in Moorella thermoacetica.
Kobayashi S, Kato J, Wada K, Takemura K, Kato S, Fujii T, Iwasaki Y, Aoi Y, Morita T, Matsushika A, Murakami K, Nakashimada Y.
Frontiers in Microbiology 2022 May 12;13, 897066.

SAXS-based study of crosslinking homogeneity in bio-based complexes prepared via the Maillard reaction between cationic polyelectrolytes and fructose.
Ushimaru K, Koag M, Morita T, Fukuoka T.
Polymer 2022 May 6;251, 124929.


【2021】
Evaluating haloarchaeal culture media for ultrahigh-molecular-weight polyhydroxyalkanoate biosynthesis by Haloferax mediterranei.
Sato S, Ino K, Ushimaru K, Wada K, Saika A, Fukuoka T, Ohshiman K, Morita T.
Appl Microbiol Biotechnol. 2021 Sep;105(18):6679-6689.

Biobased and mechanically stiff lignosulfonate/cationic-polyelectrolyte/sugar complexes with coexisting ionic and covalent crosslinks.
Ushimaru K, Morita T, watanabe R, Fukuoka T.
Polymer Journal 2021; 53: 1037-1045. 5/28

Surface-assisted laser desorption/ionization mass spectrometry analysis of the glycolipid biosurfactants, mannosylerythritol lipids, using an ionization-assisting substrate.
Fukuoka T, Nakamura S, Morita T, Ohmura T, Kotani M, Naito Y, Sato H.
J Oleo Sci. 2021 Aug 5;70(8):1175-1179.

Metabolomic evaluation of the central metabolic pathways of mannosylerythritol lipid biosynthesis in Moesziomyces antarcticus T-34.
Wada K, Saika A, Ushimaru K, Sato S, Fukuoka T, Morita T.
J. Oleo Sci. 71, (1) 119-125 (2022) 9/13

Draft genome sequence of a basidiomycetous yeast, Ustilago shanxiensis CBS 10075, which produces mannosylerythritol lipids.
Wada K, Koike H, Morita T.
Microbiology Resource Announcements Volume 10 Issue 48 e00706-21 12/2

Self-assembling properties and recovery effects on damaged skin cells of chemically synthesized mannosylerythritol lipids.
Kondo T, Yasui C, Banno T, Asakura K, Fukuoka T, Ushimaru K, Koga M, Minamikawa H, Saika A, Morita T, Takahashi D, Toshima K.
Chembiochem 2022 Jan 19;23(2):e202100631.

Preparation of pH-responsive poly(γ-glutamic acid) hydrogels by enzymatic cross-linking.
Wei M, Inoue T, Hsu Y-I, Sung M-H, Fukuoka T, Kobayashi S, Uyama H
ACS Biomater Sci Eng. 2022 Feb 14;8(2):551-559.

Autotrophic growth and ethanol production enabled by diverting acetate flux in the metabolically engineered Moorella thermoacetica.
Takemura K, Kato J, Kato S, Fujii T, Wada K, Iwasaki Y, Aoi Y, Matsushika A, Murakami K, Nakashimada Y.
J Biosci Bioeng. 2021 Dec;132(6):569-574.

Metabolic engineering for thermophilic bioconversion of gaseous substrates to a volatile chemical by Moorella thermoacetica.
Kato J, Takemura K, Kato S, Fujii T, Wada K, Iwasaki Y, Aoi Y, Matsushika A, Murakami K, Nakashimada Y.
AMB Express. 2021 Apr 23;11(1):59.


【2020】
A putative transporter gene PtMMF1-deleted strain produces mono-acylated mannosylerythritol lipids in Pseudozyma tsukubaensis.
Saika A, Fukuoka T, Koike H, Yamamoto S, Sugahara T, Sogabe A, Kitamoto D, Morita T.
Appl Microbiol Biotechnol. 2020; 104(23):10105-10117.

Bio-Based, Flexible, and Tough Material Derived from ε-Poly-l-lysine and Fructose via the Maillard Reaction
Ushimaru K, Morita T, Fukuoka T.
ACS Omega. 2020; 5(36):22793-22799.

Disruption of protease A and B orthologous genes in the basidiomycetous yeast Pseudozyma antarctica GB-4(0) yields a stable extracellular biodegradable plastic-degrading enzyme
Omae N, Sameshima-Yamashita Y, Ushimaru K, Koike H, Kitamoto H, Morita T.
PLoS One. 2021;16(3): e0247462.

Application of a pyruvate-producing Escherichia coli strain LAFCPCPt-accBC-aceE: a case study for D-lactate production
Wada K, Fujii T, Inoue H, Akita H, Morita T, Matsushika A.
Fermentation. 2020; 6(3): 10.3390/fermentation6030070

Mechanical propearties of cold-drown films of ultrahigh-molecular-weight poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterranei.
Ino K, Sato S, Ushimaru K, Saika A, Fukuoka T, Ohshiman K, Morita T.
Polymer Journal. 2020, Published: 25 June

A bio-based adhesive composed of polyelectrolyte complexes of lignosulfonate and cationic polyelectrolytes
Ushimaru K, Morita T, Fukuoka T.
Journal of Wood Chemistry and Technology. 2020, Volume40 Issue 3

Characterization of an NAD(P)+ -dependent meso-diaminopimelate dehydrogenase from Thermosyntropha lipolytica.
Akita H, Nakamichi Y, Morita T, Matsushika A.
Biochim Biophys Acta Proteins Proteom. 2020 Jun 26:140476.

Identification and functional characterization of NAD(P)+ -dependent meso-diaminopimelate dehydrogenase from Numidum massiliense.
Akita H, Nakamichi Y, Morita T, Matsushika A.
Microbiologyopen. 2020 Jun 2:e1059.

Targeted transcriptomic study of the implication of central metabolic pathways in mannosylerythritol lipids biosynthesis in Pseudozyma antarctica T-34.
Wada K, Koike H, Fujii T, Morita T.
PLoS One. 2020 Jan 10;15(1):e0227295.

Screening and isolation of the liamocin-producing yeast Aureobasidium melanogenum using xylose as the sole carbon source.
Saika A, Fukuoka T, Mikome S, Kondo Y, Habe H, Morita T.
J Biosci Bioeng. 2020;129(4):428-43


【2019】
A New Screening Approach for Glycolipid-type Biosurfactant Producers Using MALDI-TOF/MS.
Sato S, Fukuoka T, Saika A, Koshiyama T, Morita T.
J Oleo Sci. 2019;68(12):1287-1294.

Moldable Material from ε-Poly-l-lysine and Lignosulfonate: Mechanical and Self-Healing Properties of a Bio-Based Polyelectrolyte Complex.
Ushimaru K, Hamano Y, Morita T, Fukuoka T.
ACS Omega. 2019 Jun 4;4(6):9756-9762

Deficiency of biodegradable plastic-degrading enzyme production in a gene-deletion mutant of phyllosphere yeast, Pseudozyma antarctica defective in mannosylerythritol lipid biosynthesis.
Saika A, Koike H, Yarimizu T, Watanabe T, Kitamoto H, Morita T.
AMB Express. 2019;9(1):100.

Construction of a Pseudozyma antarctica strain without foreign DNA sequences (self-cloning strain) for high yield production of a biodegradable plastic-degrading enzyme.
Sameshima-Yamashita Y, Watanabe T, Tanaka T, Tsuboi S, Yarimizu T, Morita T, Koike H, Suzuki K, Kitamoto H.
Biosci Biotechnol Biochem. 2019 Aug;83(8):1547-155


【2018】
Identification of the gene PtMAT1 encoding acetyltransferase from the diastereomer type of mannosylerythritol lipid-B producer Pseudozyma tsukubaensis.
Saika A, Utashima Y, Koike H, Yamamoto S, Kishimoto T, Fukuoka T, Morita T.
J Biosci Bioeng. 2018 Dec;126(6):676-681.

Efficient Production of Acid-Form Sophorolipids from Waste Glycerol and Fatty Acid Methyl Esters by Candida floricola.
Konishi M, Morita T, Fukuoka T, Imura T, Uemura S, Iwabuchi H, Kitamoto D.
Oleo Sci. 2018 Apr 1;67(4):489-496.

Biosynthesis of mono-acylated mannosylerythritol lipid in an acyltransferase gene-disrupted mutant of Pseudozyma tsukubaensis.
Saika A, Utashima Y, Koike H, Yamamoto S, Kishimoto T, Fukuoka T, Morita T.
Appl Microbiol Biotechnol. 2018 Feb;102(4):1759-1767

Biosynthesis of polyhydroxyalkanoates containing 2-hydroxy-4-methylvalerate and 2-hydroxy-3-phenylpropionate units from a related or unrelated carbon source.
Mizuno S, Enda Y, Saika A, Hiroe A, Tsuge T.
J Biosci Bioeng. 2018 Mar;125(3):295-300

Moldable and Humidity-Responsive Self-Healable Complex from Lignosulfonate and Cationic Polyelectrolyte.
Ushimaru K, Morita T, Fukuoka T.
ACS Sustainable Chemistry & Engineering,6-11:14831-14837 (2018)

Application of Glycolipid Biosurfactants as Surface Modifiers in Bioplastics.
Fukuoka T, Morita T, Saika A, Habe H.
J Oleo Sci. 2018 Dec 1;67(12):1609-1616


【2017】
Enhanced production of a diastereomer type of mannosylerythritol lipid-B by the basidiomycetous yeast Pseudozyma tsukubaensis expressing lipase genes from Pseudozyma antarctica.
Saika A, Koike H, Yamamoto S, Kishimoto T, Morita T.
Appl Microbiol Biotechnol. 101: 8345-8352 (2017)

Selective Production of Acid-form Sophorolipids from Glycerol by Candida floricola.
Konishi M, Morita T, Fukuoka T, Imura T, Uemura S, Iwabuchi H, Kitamoto D.
J Oleo Sci. 66:1365-1373 (2017)

Degradation profiles of biodegradable plastic films by biodegradable plastic-degrading enzymes from the yeast Pseudozyma antarctica and the fungus Paraphoma sp. B47-9.
Sato, S., Saika,A., Shinozaki, Y., Watanabe,T., Suzuki, K., Sameshima-Yamashita, Y., Fukuoka, T., Habe, H., Morita, T., Kitamoto, H.
Polym Degrad Stab. 141: 26–32 (2017)

Application of bio-based organic acid, D-glyceric acid: Synthesis and interfacial property of dihexanoyl glycerate.
Sato, S., et al.
Journal of Environmental Biotechnology

Preliminary evaluation of glyceric acid-producing ability of Acidomonas methanolica NBRC 104435 from glycerol containing methanol.
Sato, S., Kitamoto, D., Habe, H.
Journal of Oleo Science. 2017 Jun 1;66(6):653-658.

The design and synthesis of an α-Gal trisaccharide epitope that provides a highly specific anti-Gal immune response.
Anraku, K., Sato, S., Jacob, N., Mubank, L., Ellis, B., Janda, K.
Organic and Biomolecular Chemistry. 2017 Apr 5;15(14):2979-2992.

Real-Time Observation of Enzymatic Polyhydroxyalkanoate Polymerization Using High-Speed Scanning Atomic Force Microscopy.
Ushimaru, K., Mizuno,S., Honya, A., iAbe, H., Tsuge, T.
ACS Omega, 2, 181-185 (2017).

Antimicrobial Activity of ε-Poly-L-lysine after Forming a Water-Insoluble Complex with an Anionic Surfactant.
Ushimaru,K., Hamano, Y., Katano, H.
Biomacromolecules, 18, 1387-1392 (2017).


【2016】
Cocaine Vaccine Development: Evaluation of Carrier and Adjuvant Combinations that Activate Multiple Toll-like Receptors.
Kimishima, A., Wenthur, C.J., Eubanks, L.M., Sato, S., Janda, K.D.
Mol Pharm. 13: 3884-3890 (2016).

Production of dicarboxylic acids from novel unsaturated fatty acids by laccase-catalyzed oxidative cleavage.
Takeuchi, M., Kishino, S., Park, S.B., Kitamura, N., Watanabe, H., Saika, A., Hibi, M., Yokozeki, K., Ogawa, J.
Biosci Biotechnol Biochem. (2016)

Draft Genome Sequence of Burkholderia stabilis LA20W, a Trehalose Producer That Uses Levulinic Acid as a Substrate.
Sato, Y., Koike, H., Kondo, S., Hori, T., Kanno, M., Kimura, N., Morita, T., Kirimura, K., Habe, H.
Genome Announc., 4: pii: e00795-16 (2016). doi: 10.1128/genomeA.00795-16.

Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.
Fukuoka, T., Shinozaki, Y., Tsuchiya, W., Suzuki, K., Watanabe, T., Yamazaki, T., Kitamoto, D., Kitamoto, H.
Appl. Microbiol. Biotechnol., 100: 1733-1741 (2016).

Biodegradable Plastic-degrading Activity of Various Species of Paraphoma.
Koitabashi, M., Sameshima-Yamashita, Y., Koike, H., Sato, T., Moriwaki, J., Morita, T., Watanabe, T., Yoshida, S., Kitamoto, H.
J. Oleo Sci., 65: 621-627 (2016).

A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis.
Saika, A., Koike, H., Fukuoka, T., Yamamoto, S., Kishimoto, T., Morita, T.
PLoS One, 11: e0157858, doi: 10.1371/journal.pone.0157858. (2016)

Synthesis and Characterization of Dioctanoyl Glycerate as Water-soluble Trypsin Inhibitor.
Sato, S., Nagata, S., Imura, T., Fukuoka, T., Morita, T., Takahashi, Y., Kondo, Y., Kitamoto, D., Habe, H.
J. Oleo Sci., 65: 251-256 (2016).

High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter.
Watanabe, T., Morita, T., Koike, H., Yarimizu, T., Shinozaki, Y., Sameshima-Yamashita, Y., Yoshida, S., Koitabashi, M., Kitamoto, H.
Appl. Microbiol. Biotechnol., 100: 3207-3217 (2016).


【2015】
Application of yeast glycolipid biosurfactant, mannosylerythritol lipid, as agrospreaders.

Fukuoka, T., Yoshida, S., Nakamura, J., Koitabashi, M., Sakai, H., Abe, M., Kitamoto, D., Kitamoto, H.
J. Oleo Sci., 64: 689-695 (2015).

Isolation and characterization of bacterial strains with the ability to utilize high concentrations of levulinic acid, a platform chemical from inedible biomass.
Habe, H., Sato, S., Morita, T., Fukuoka, T., Kirimura, K., Kitamoto, D.
Biosci. Biotechnol. Biochem., 79: 1552-1555 (2015).

Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential of cellulose-derived building block as a feedstock for microbial production.
Habe, H., Sato, S., Morita, T., Fukuoka, T., Kirimura, K., Kitamoto D.
Bioresour. Technol., 177: 381-386 (2015).

Draft genome sequence of the yeast Starmellela bombicola NBRC10243, a producer of sophorolipids, glycolipid biosurfactants.
Matsuzawa, T., Koike, H., Saika, A., Fukuoka, T., Sato, S., Habe, H., Kitamoto, D., Morita, T.
Genome Announcement., 3: e00176-15, doi:10.1128/genomeA.00176-15 (2015).

Selective formation of mannosyl-L-arabitol lipid by Pseudozyma tsukubaensis JCM16987.
Morita, T., Fukuoka, T., Kosaka, A., Imura, T., Sakai, H., Abe, M., Kitamoto, D.
Appl. Microbiol. Biotechnol., 99: 5833-5841 (2015).

Microbial resolution of DL-glyceric acid for L-glyceric acid production using newly isolated bacterial strains.
Sato, S., Morita, T., Fukuoka, T., Kitamoto, D., Habe, H.
J. Biosci. Bioeng., 119: 554-557 (2015).

Simultaneous bioethanol distillery wastewater treatment and xylanase production by the phyllosphere yeast Pseudozyma antarctica GB-4(0).
Watanabe, T., Suzuki, K., Sato, I., Morita, T., Koike, H., Shinozaki, Y., Ueda, H., Koitabashi, M., Kitamoto, HK.
AMB Express, 5: 121, doi: 10.1186/s13568-015-0121-8 (2015).


【2014】
Effect of membrane-bound aldehyde dehydrogenase-encoding gene disruption on glyceric acid production in Gluconobacter oxydans
.
Habe, H., Sato, S., Fukuoka, T., Kitamoto, D., Sakaki, K.
J.Oleo Sci., 63: 953-957 (2014).

Monolayer behavior of binary systems of lactonic and acidic forms of sophorolipids: thermodynamic analyses of Langmuir monolayers and AFM study of Langmuir-Blodgett monolayers.
Imura, T., Kawamura, D., Taira, T., Morita, T., Fukuoka, T., Aburai, K., Sakai, H., Abe, M., Kitamoto, D.
J. Oleo Sci., 63: 67-73 (2014).

Aqueous gel formation from sodium salts of cellobiose lipids.
Imura, T., Yamamoto, S., Yamashita, C., Taira, T., Minamikawa, H., Morita, T., Kitamoto, D.
J Oleo Sci. 63: 1005-1010 (2014).

Spontaneous vesicle formation from sodium salt of acidic sophorolipid and its application as a skin penetration enhancer.
Imura, T., Morita, T., Fukuoka, T., Ryu, M., Igarashi, K., Hirata, Y., Kitamoto, D.
J. Oleo Sci., 63: 141-147 (2014).

Draft genome sequence of Acetobactertropicalis type strain NBRC16470, a producer of optically pure D-glyceric acid.
Koike, H., Sato, S., Morita, T., Fukuoka, T., Habe, H.
Genome Announcement., 2: e01329-14, doi:10.1128/genomeA.01329 (2014).

Biosurfactant-producing yeasts widely inhabit various vegetables and fruits.
Konishi, M., Maruoka, N., Furuta, Y., Morita, T., Fukuoka, T., Imura, T., Kitamoto, D.
Biosci. Biotechnol. Biochem., 78: 516-523 (2014).

Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant.
Konishi, M., Nishi, S., Fukuoka, T., Kitamoto, D., Watsuji, TO., Nagano, Y., Yabuki, A., Nakagawa, S., Hatada, Y., Horiuchi, J.
Mar Biotechnol. (NY), 16: 484-493 (2014).

Genome and transcriptome analysis of the Basidiomycetous yeast Pseudozyma antarctica producing extracellular glycolipids, mannosylerythritol lipids.
Morita, T., Koike, H., Hagiwara, H., Ito, E., Machida, M., Sato, S., Habe, H., Kitamoto, D.
PLoS One, 9: e86490, doi:10.1371/journal.pone.0086490 (2014).

Draft genome sequence of the yeast Pseudozyma antarctica type strain JCM10317T, a producer of the glycolipid biosurfactants, mannosylerythritol lipids.
Saika, A., Koike, H., Hori, T., Fukuoka, T., Sato, S., Habe, H., Kitamoto, D., Morita, T.
Genome Announcement., 2: e00878-14, doi:10.1128/genomeA.00878-14 (2014).

Separation and functional evaluation of dark brown colorants in distillery wastewater from molasses-derived bioethanol production process.
Sakaki, K., Habe, H., Ikegami, T., Yanagishita, H.
J. Water Environ. Technol., 12: 407-420 (2014).

Chemical mutagenesis of Gluconobacter frateurii to construct methanol-resistant mutants showing glyceric acid production from glycerol containing methanol.
Sato, S., Kitamoto, D., Habe, H.
J. Biosci. Bioeng.,117: 197-199 (2014).

In vitro evaluation of glyceric acid and its glucosyl derivative, beta-glucosylglyceric acid, as cell proliferating agents and protective solutes.
Sato, S., Kitamoto, D., Habe, H.
Biosci. Biotechnol. Biochem., 78: 1183-1186 (2014).

Xylose induces the phyllosphere yeast Pseudozyma antarctica to produce a cutinase-like enzyme which efficiently degrades biodegradable plastics.
Watanabe, T., Shinozaki, Y., Yoshida, S., Koitabashi, M., Sameshima-Yamashita, Y., Fujii, T., Fukuoka, T., Kitamoto, HK.
J. Biosci. Bioeng., 117: 325-329 (2014).

Mannosylerythritol lipids secreted by phyllosphere yeast Pseudozyma antarctica is associated with its filamentous growth and propagation on plant surfaces.
Yoshida, S., Morita, T., Shinozaki, Y., Watanabe, T., Sameshima-Yamashita, Y., Koitabashi, M., Kitamoto, D., Kitamoto, H.
Appl. Microbiol. Biotechnol., 98: 6419-6429 (2014).

Production of D-arabitol from raw glycerol by Candida quercitrusa.
Yoshikawa, J., Habe, H., Morita, T., Fukuoka, T., Imura, T., Iwabuchi, H., Uemura, S., Tamura, T., Kitamoto, D.
Appl. Microbiol. Biotechnol., 98: 2947-2953 (2014).

Production of mannitol from raw glycerol by Candida azyma.
Yoshikawa, J., Habe, H., Morita, T., Fukuoka, T., Imura, T., Iwabuchi, H., Uemura, S., Tamura, T., Kitamoto, D.
J. Biosci. Bioeng., 117: 725-729 (2014).

Selective production of two diastereomers of disaccharide sugar alcohol, mannosylerythritol by Pseudozyma yeasts.
Yoshikawa, J., Morita, T., Fukuoka, T., Konishi, M., Imura, T., Kakugawa, K., Kitamoto, D.
Appl. Microbiol. Biotechnol., 98: 823-830 (2014).


【2013】
Chemical analysis of impurities in diverse bioethanol samples.

Habe, H., Shinbo, T., Yamamoto, T., Sato, S., Shimada, H., Sakaki, K.
J. Jpn. Petrol. Inst., 56: 414-422 (2013).

High-yield production of sophorolipids from Jatropha oil by Stamerella bombicola.
Imura, T., Kawamura, D., Morita, T., Sato, S., Fukuoka, T., Yamagata, Y., Wada, K., Takahashi, M., Kitamoto, D.
J. Oleo Sci., 62: 857-864 (2013).

Production of sophorolipids from non-edible jatropha oil by Stamerella bombicola NBRC 10243 and evaluation of their interfacial properties.
Imura, T., Kawamura, D., Morita, T., Sato, S., Fukuoka, T., Yamagata, Y., Takahashi, M., Wada, K., Kitamoto, D.
J. Oleo Sci., 62: 857-864 (2013).

Genome sequence of the Basidiomycetous yeast Pseudozyma antarctica T-34, a producer of the glycolipid biosurfactants mannosylerythritol lipids.
Morita, T., Koike H., Koyama, Y., Hagiwara, H., Ito, E., Fukuoka, T., Imura, T., Machida, M., Kitamoto, D.
Genome Announc., 1: e0006413 (2013).

Characterization of mannosylerythritol lipids containing hexadecatetraenoic acid produced from cuttlefish oil by Pseudozyma churashimaensis OK96.
Morita, T., Kawamura, D., Morita, N., Fukuoka, T., Imura, T., Sakai, H., Abe, M., Kitamoto, D.
J. Oleo Sci., 62: 319-327 (2013).

A robust route to enzymatically functional, hierarchically self-assembled peptide frameworks.
Sangiambut, S., Channon, K., Thomson, N. M., Sato, S., Tsuge, T., Sivaniah, E.
Adv. Mater., 25: 2661-2665 (2013).

Enzymatic degradation of polyester films by a cutinase-like enzyme from Pseudozyma antarctica: Surface Plasmon resonance and atomic force microscopy study.
Shinozaki, Y., Kikkawa, Y., Sato, S., Fukuoka, T., Watanabe, T., Yoshida, S., Nakajima-Kambe, K.T., Kitamoto, H.K.
Appl. Microbiol. Biotechnol., 97: 8591-8598 (2013).

Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization.
Shinozaki, Y., Morita, T., Cao, X.H., Yoshida, S., Koitabashi, M., Watanabe, T., Suzuki, K., Sameshima-Yamashita, Y., Nakajima-Kambe, T., Fujii, T., Kitamoto, H.K.
Appl. Microbiol. Biotechnol., 97: 2951-2959 (2013).

Expression and characterization of a class III alcohol dehydrogenase gene from Gluconobacter frateurii in the presence of methanol during glyceric acid production from glycerol.
Sato, S., Morita, N., Kitamoto, D., Habe, H.
J.Oleo Sci., 62: 835-842 (2013).

Draft genome sequence of Gluconobacter frateurii NBRC103465, a glyceric acid-producing strain.
Sato, S., Umemura, M., Koike, H., Habe, H.
Genome Announc., 1: e00369-13, doi:10.1128/genomeA.00369 (2013).

Change in product selectivity in glyceric acid production from glycerol by Gluconobacter strains in the presence of methanol.
Sato, S., Morita, N., Kitamoto, D., Yakushi, T., Matsushita, K., Habe, H.
AMB Express, 3: 20 (2013).

In vitro evidence of chain transfer to tetraethylene glycols in enzymatic polymerization of polyhydroxyalkanoate.
Tomizawa, S., Sato, S., Lan, J. C.-W., Nakamura, Y., Abe, H., Tsuge, T.
Appl. Microbiol. Biotechnol., 97: 4821-4829 (2013).

Production of a novel mannosylerythritol lipid containing a hydroxy fatty acid from castor oil by Pseudomonas tsukubaensis.
Yamamoto, S., Fukuoka, T., Imura, T., Morita, T., Yanagidani, S., Kitamoto, D., Kitagawa, M.
J. Oleo Sci., 62: 381-389 (2013).


【2012】
Thermal properties and crystallization behaviors of medium-chain-length poly(3-hydroxyalkanoate)s
.
Abe, H., Ishii, N., Sato, S., Tsuge T.
Polymer, 53: 3026-3034 (2012).

The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration.
Fukuoka, T., Yanagihara, T., Imura, T., Morita, T., Sakai, H., Abe, M., Kitamoto, D.
Carbohydr. Res., 351: 81-86 (2012).

Synthesis and interfacial properties of monoacyl glyceric acids as a new class of green surfactants and their interfacial properties.
Fukuoka, T., Ikeda, S., Habe, H., Sato, S., Imura, T., Sakaki, K., Sakai, H, Abe, M., Kitamoto, D.
J. Oleo Sci., 61: 343-348 (2012).

Reverse vesicle formation from the yeast glycolipid biosurfactant mannosylerythritol lipid-D.
Fukuoka, T., Yanagihara, T., Ito, S., Imura, T., Morita, T., Sakai, H., Abe, M., Kitamoto, D.
J. Oleo Sci., 61: 285-289 (2012).

Low molecular weight gelators based on biosurfactnants, cellobiose lipids by Cryptococcus humicola.
Imura, T., Kawamura, D., Ishibashi, Y., Morita, T., Fukuoka, T., Sato, S., Kikkawa, Y., Kitamoto, D.
J. Oleo Sci., 61: 659-664 (2012).

Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T.
Morita, T., Fukuoka, T., Imura, T., Kitamoto, D.
Appl. Microbiol. Biotechnol., 96: 931-938 (2012).

Isolation and screening of glycolipid biosurfactant producers from sugarcane.
Morita, T., Fukuoka, T., Imura, T., Hirose, N., Kitamoto, D.
Biosci. Biotechnol. Biochem., 76: 1788-1791 (2012).

Accumulation of cellobiose lipids under nitrogen limiting conditions by two ustilaginomycetous yeasts, Pseudozyma aphidis and Pseudozyma hubeiensis.
Morita, T., Fukuoka, T., Imura, T., Kitamoto, D.
FEMS Yeast Res., 13: 44-49 (2012).

Stepwise synthesis of 2,3-O-dipalmitoyl D-glyceric acid and in vitro evaluation of its cytotoxicity.
Sato, S., Habe, H., Fukuoka, T., Kitamoto, D., Sakaki, K.
J. Oleo Sci., 61: 337-341 (2012).

Utilization of 2-alkenoic acids for biosynthesis of medium-chain-length polyhydroxyalkanoates in metabolically engineered Escherichia coli to construct a novel chemical recycling system.
Sato, S., Ishii, N., Hamada, Y., Abe, H., Tsuge, T.
Polym. Degrad. Stab., 97: 329-336 (2012).

Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H2O2-induced oxidative stress in cultured human skin fibroblasts.
Takahashi, M., Morita, T., Fukuoka, T., Imura, T., Kitamoto, D.
J. Oleo Sci., 61: 457-464 (2012).

Recovery from the damage of glycolipid biosurfactants, mannosylerythritol lipids, toward human skin.
Yamamoto, S., Morita, T., Fukuoka, T., Imura, T., Yanagidani, S., Sogabe, A., Kitamoto, D., Kitagawa, M.
J. Oleo Sci., 61: 407-412 (2012).

The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin.
Yamamoto, S., Morita, T., Fukuoka, T., Imura, T., Yanagidani, S., Sogabe, A., Kitamoto, D., Kitagawa, M.
J. Oleo Sci., 61: 407-412 (2012).


【2011】
Bioprocessing of glycerol into glyceric acid for use in bioplastic monomer
.
Fukuoka, T., Habe, H., Kitamoto, D., Sakaki, K.
J. Oleo Sci., 60: 369-373 (2011).

Enzymatic synthesis of a novel glycolipid biosurfactant, mannosylerythritol lipid-D and its aqueous phase behavior.
Fukuoka, T., Yanagihara, T., Imura, T., Morita, T., Sakai, H., Abe, M., Kitamoto, D.
Carbohydr. Res., 346: 266-271 (2011).

Synthesis and evaluation of dioleoyl glyceric acid showing antitrypsin activity.
Habe, H., Fukuoka, T., Sato, S., Kitamoto, D., Sakaki, K.
J. Oleo Sci., 60: 327-331 (2011).

Effect of glyceric acid calcium salt on the viability of ethanol-dosed gastric cells.
Habe, H., Sato, S., Fukuoka, T., Kitamoto, D., Sakaki, K.
J. Oleo Sci., 60: 585-590 (2011).

Membrane-bound alcohol dehydrogenase is essential for glyceric acid production in Acetobacter tropicalis.
Habe, H., Sato, S., Fukuoka, T., Kitamoto, D., Yakushi, T., Matsushita, K., Sakaki, K.
J. Oleo Sci., 60: 489-494 (2011).

Phyllosphere yeasts rapidly break down biodegradable plastics.
Kitamoto, H.K., Shinozaki, Y., Cao, X.H., Morita, T., Konishi, M., Tago, K., Kajiwara, H., Koitabashi, M., Yoshida, S., Watanabe, T., Sameshima-Yamashita, Y., Nakajima-Kambe, T., Tsushima, S.
AMB Express, 1: 44 (2011).

Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62.
Konishi, M., Nagahama, T., Fukuoka, T., Morita, T., Imura, T., Kitamoto, D., Hatada, Y.
J. Biosci. Bioeng., 111: 702-705 (2011).

Identification of a galactose-specific flocculin essential for non-sexual flocculation and filamentous growth in Schizosaccharomyces pombe.
Matsuzawa, T., Morita, T., Tanaka, N., Tohda, H., Takegawa, K.
Mol. Microbiol., 82: 1531-1544 (2011).

Production of glycolipid biosurfactants, cellobiose lipids, by Cryptococcus humicola JCM 1461 and its interfacial properties.
Morita, T., Ishibashi, Y., Fukuoka, T., Imura, T., Sakai, H., Abe, M., Kitamoto, D.
Biosci. Biotechnol. Biochem., 75: 1597-1599 (2011).

Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730.
Morita, T., Ishibashi, Y., Hirose, N., Wada, K., Takahashi, M., Fukuoka, T., Imura, T., Sakai, H., Abe, M., Kitamoto, D.
Biosci. Biotechnol. Biochem., 75: 1371-1376 (2011).

Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids.
Morita, T., Ogura, Y., Takashima, M., Hirose, N., Fukuoka, T., Imura, T., Kondo, Y., Kitamoto, D.
J. Biosci. Bioeng., 112: 137-144 (2011).

Synthesis of dilinoleoyl D-glyceric acid and its evaluation for cytotoxicity to human dermal fibroblast and endothelial cells.
Sato, S., Habe, H., Fukuoka, T., Kitamoto, D., Sakaki, K.
J. Oleo Sci., 60: 438-487 (2011).

Expression and characterization of (R)-specific enoyl coenzyme A hydratases making a channeling route to polyhydroxyalkanoate biosynthesis in Pseudomonas putida.
Sato, S., Kanazawa, H., Tsuge, T.
Appl. Microbiol. Biotechnol., 90: 951-959 (2011).

Production of sophorolipid glycolipid biosurfactants from sugarcane molasses using Starmerella bombicola NBRC 10243.
Takahashi, M., Morita, T., Wada, K., Hirose, N., Fukuoka, T., Imura, T., Kitamoto, D.
J. Oleo Sci., 60: 267-273 (2011).

Imaging internal features of whole, unfixed bacteria.
Thomson, N.M.; Channon, K., Mokhtar, N.A., Stanieswcz, L., Rai, R., Roy, I., Sato, S., Tsuge, T., Donald, A.M., Summers, D., Sivaniah, E.
Scanning, 33: 59-68 (2011).


【2010】
Two-stage electrodialytic concentration of glyceric acid from fermentation broth.

Habe, H., Shimada, Y., Fukuoka, T., Kitamoto, D., Itagaki, M., Watanabe, K., Yanagishita, H., Sakaki, K.
J. Biosci. Bioeng., 110: 690-695 (2010)

Use of a Gluconobacter frateurii mutant to prevent dihydroxyacetone accumulation during glyceric acid production from glycerol.
Habe, H., Shimada, Y., Fukuoka, T., Kitamoto, D., Itagaki, M., Watanabe, K., Yanagishita, H., Yakushi, T., Matsushita, K., Sakaki, K.
Biosci. Biotechnol. Biochem., 74: 2330-2332 (2010).

Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans.
Habe, H., Fukuoka, T., Morita, T., Kitamoto, D., Yakushi, T., Matsushita, K., Sakaki, K.
Biosci. Biotechnol. Biochem., 74: 1391-1395 (2010).

Enzymatic conversion of diacetylated sophoroselipid into acetylated glucoselipid: surface-active properties of novel bolaform biosurfactants.
Imura, T., Masuda, Y., Minamikawa, H., Fukuoka, T., Konishi, M., Morita, T., Sakai, H., Abe, M., Kitamoto, D.
J. Oleo Sci., 59: 495-501 (2010).

Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea.
Konishi, M., Fukuoka, T., Nagahama, T., Morita, T., Imura, T., Kitamoto, D., Hatada, Y.
J. Biosci. Bioeng., 110: 169-175 (2010).

Activation of fibroblast and papilla cells by glycolipid biosurfactants, mannosylerythritol lipids.
Morita, T., Kitagawa, M., Yamamoto, S., Suzuki, M., Sogabe, A., Imura, T., Fukuoka, T., Kitamoto, D.
J. Oleo Sci., 59: 451-455 (2010).

Identification of the gene PaEMT1 for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast Pseudozyma antarctica.
Morita, T., Ito, E., Kitamoto, H.K., Takegawa, K., Fukuoka, T., Imura, T., Kitamoto, D.
Yeast, 27: 905-917 (2010).

Glycolipid biosurfactants, mannosylerythritol lipids, repair the damaged hair.
Morita, T., Kitagawa, M., Yamamoto, S., Sogabe, A., Yanagidani, S., Imura, T., Fukuoka, T., Kitamoto, D.
J. Oleo Sci., 59: 267-272 (2010).

The role of PaAAC1 encoding a mitochondrial ADP/ATP carrier in the biosynthesis of extracellular glycolipids, mannosylerythritol lipids, in basidiomycetous yeast Pseudozyma antarctica.
Morita, T., Ito, E., Fukuoka, T., Imura, T., Kitamoto, D.
Yeast, 27: 379-388 (2010).

Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, diastereomer type of mannosylerythritol lipid-B.
Morita, T., Takashima, M., Fukuoka, T., Konishi, M., Imura, T., Kitamoto, D.
Appl. Microbiol. Biotechnol., 88: 679-688 (2010).

Mannosylinositol phosphorylceramide is a major sphingolipid component and is required for proper localization of plasma-membrane proteins in Schizosaccharomyces pombe.
Nakase, M., Tani, M., Morita, T., Kitamoto, H.K., Kashiwazaki, J., Nakamura, T., Hosomi, A., Tanaka, N., Takegawa, K.
J. Cell Sci., 123: 1578-1587 (2010).


【2009】
Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol.

Habe, H., Shimada, Y., Yakushi, T., Hattori, H., Ano, Y., Fukuoka, T., Kitamoto, D., Itagaki, M., Watanabe, K., Yanagishita, H., Matsushita, K., Sakaki, K.
Appl. Environ. Microbiol., 75: 7760-7766 (2009).

Glycerol conversion to D-xylulose by a two-stage microbial reaction using Candida parapsilosis and Gluconobacter oxydans.
Habe, H., Fukuoka, T., Kitamoto, D., Sakaki, K.
J. Oleo Sci., 58: 595-600 (2009).

Production of glyceric acid by Gluconobacter sp. NBRC3259 using raw glycerol.
Habe, H., Shimada, Y., Fukuoka, T., Kitamoto, D., Itagaki, M., Watanabe, K., Yanagishita, H., Sakaki, K.
Biosci. Biotechnol. Biochem., 73: 1799-1805 (2009).

Application of electrodialysis to glycerate recovery from a glycerol-containing model solution and culture broth.
Habe, H., Fukuoka, T., Kitamoto, D., Sakaki, K.
J. Biosci. Bioeng., 107: 425-428 (2009).

Detection of acetyl monoglyceride as a metabolite of newly isolated glycerol-assimilating bacteria.
Habe, H., Iwabuchi, H., Uemura, S., Tamura, T., Morita, T., Fukuoka, T., Imura, T., Sakaki, K., Kitamoto, D.
J. Oleo Sci., 58: 147-154 (2009).

Biotransformation of glycerol to D-glyceric acid by Acetobacter tropicalis.
Habe, H., Fukuoka, T., Kitamoto, D., Sakaki, K.
Appl. Microbiol. Biotechnol., 81: 1033-1039 (2009).

Processing of ethanol fermentation broths by Candida krusei to separate bioethanol by pervaporation using silicone rubber-coated silicalitemembranes.
Ikegami, T., Morita, T., Nakayama, S., Negishi, H., Kitamoto, D., Sakaki, K., Oumi, Y., Sano, T., Haraya, K., Yanagishita H.
J. Chem. Technol. Biotechnol., 84: 1172-1177 (2009).

Production of glycolipid biosurfactants, mannosylerythritol lipids, using sucrose by fungal and yeast strains, and their interfacial properties.
Morita, T., Ishibashi, Y., Fukuoka, T., Imura, T., Sakai, H., Abe, M., Kitamoto, D.
Biosci. Biotechnol. Biochem., 73: 2352-2355 (2009).

A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows potential moisturizing activity toward cultured human skin cells: the recovery effect of MEL-A on the SDS-damaged human skin cells.
Morita, T., Kitagawa, M., Suzuki, M., Yamamoto, S., Sogabe, A., Yanagidani, S., Imura, T., Fukuoka, T., Kitamoto, D.
J. Oleo Sci., 58: 639-642 (2009).

Production of glycolipid biosurfactants, mannosylerythritol lipids, by a smut fungus, Ustilago scitaminea NBRC 32730.
Morita, T., Ishibashi, Y., Fukuoka, T., Imura, T., Sakai, H., Abe, M., Kitamoto, D.
Biosci. Biotechnol. Biochem., 73: 788-792 (2009).

Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties.
Morita, T., Fukuoka, T., Konishi, M., Imura, T., Yamamoto, S., Kitagawa, M., Sogabe, A., Kitamoto, D.
Appl. Microbiol. Biotechnol., 83: 1017-1025 (2009).

Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74.
Tokumoto, Y., Nomura, N., Uchiyama, H., Imura, T., Morita, T., Fukuoka, T., Kitamoto, D.
J. Oleo Sci., 58: 97-102 (2009).

Phase behavior of ternary mannosylerythritol lipid/water/oil systems.
Worakitkanchanakul, W., Imura, T., Fukuoka, T., Morita, T., Sakai, H., Abe, M., Rujiravanit, R., Chavadej, S., Minamikawa, H., Kitamoto, D.
Colloids Surf. B Biointerfaces, 68: 207-212 (2009).


【2008】
Identification of the fnx1+ and fnx2+ genes for vacuolar amino acid transporters in Schizosaccharomyces pombe
.
Chardwiriyapreecha, S., Shimazu, M., Morita, T., Sekito, T., Akiyama, K., Takegawa, K., Kakinuma, Y.
FEBS Lett., 582: 2225-2230 (2008).

A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants.
Fukuoka, T., Kawamura, M., Morita, T., Imura, T., Sakai, H., Abe, M., Kitamoto, D.
Carbohydr. Res., 343: 2947-2955 (2008).

A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B.
Fukuoka, T., Morita, T., Konishi, M., Imura, T., Kitamoto, D.
Carbohydr. Res., 343: 555-560 (2008).

Isolation and characterization of thermotolerant fungi producing lignoceric acid from glycerol.
Habe, H., Morita, T., Sakaki, K., Kitamoto, D.
J. Oleo Sci., 57: 251-255 (2008).

Packing density of glycolipid biosurfactant monolayers give a significant effect on their binding affinity toward immunoglobulin G.
Imura, T., Masuda, Y., Ito, S., Worakitkanchanakul, W., Morita, T., Fukuoka, T., Sakai, H., Abe, M., Kitamoto, D.
J. Oleo Sci., 57: 415-422 (2008).

Multiple functions of ergosterol in the fission yeast Schizosaccharomyces pombe.
Iwaki, T., Iefuji, H., Hiraga, Y., Hosomi, A., Morita, T., Giga-Hama, Y., Takegawa, K.
Microbiology, 154: 830-841 (2008).

Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59.
Konishi, M., Morita, T., Fukuoka, T., Imura, T., Kakugawa, K., Kitamoto, D.
Appl. Microbiol. Biotechnol., 78: 37-46 (2008).

Production of new types of sophorolipids by Candida batistae.
Konishi, M., Fukuoka, T., Morita, T., Imura, T., Kitamoto, D.
J. Oleo Sci., 57: 359-369 (2008).

Efficient production of di- and tri-acylated mannosylerythritol lipids as glycolipid biosurfactants by Pseudozyma parantarctica JCM 11752T.
Morita, T., Konishi, M., Fukuoka, T., Imura, T., Sakai, H., Kitamoto, D.
J. Oleo Sci., 57: 557-565 (2008).

Identification of Ustilago cynodontis as a new producer of glycolipid biosurfactants, mannosylerythritol lipids, based on ribosomal DNA sequences.
Morita, T., Konishi, M., Fukuoka, T., Imura, T., Kitamoto, D.
J. Oleo Sci., 57: 549-556 (2008).

Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids.
Morita, T., Konishi, M., Fukuoka, T., Imura, T., Yamamoto, S., Kitagawa, M., Sogabe, A., Kitamoto, D.
J. Oleo Sci., 57: 123-131 (2008).

Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties.
Morita, T., Konishi, M., Fukuoka, T., Imura, T., Kitamoto, D.
J. Biosci. Bioeng., 105: 493-502 (2008).

Candida krusei produces ethanol without production of succinic acid; a potential advantage for ethanol recovery by pervaporation membrane separation.
Nakayama, S., Morita, T., Negishi, H., Ikegami, T., Sakaki, K., Kitamoto, D.
FEMS Yeast Res., 8: 706-714 (2008).

Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B.
Worakitkanchanakul, W., Imura, T., Fukuoka, T., Morita, T., Sakai, H., Abe, M., Rujiravanit, R., Chavadej, S., Minamikawa, H., Kitamoto, D.
Colloids Surf. B Biointerfaces, 65: 106-112 (2008).

Formation of W/O microemulsion based on natural glycolipid biosurfactant, mannosylerythritol lipid-a.
Worakitkanchanakul, W., Imura, T., Morita, T., Fukuoka, T., Sakai, H., Abe, M., Rujiravanit, R., Chavadej, S., Kitamoto, D.
J. Oleo Sci., 57: 55-59 (2008).


【2007】
Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica.

Fukuoka, T., Morita, T., Konishi, M., Imura, T., Sakai, H., Kitamoto, D.
Appl. Microbiol. Biotechnol., 76: 801-810 (2007).

Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts.
Fukuoka, T., Morita, T., Konishi, M., Imura, T., Kitamoto, D.
Biotechnol. Lett., 29: 1111-1118 (2007).

Characterization of new types of mannosylerythritol lipids as biosurfactants produced from soybean oil by a basidiomycetous yeast, Pseudozyma shanxiensis.
Fukuoka, T., Morita, T., Konishi, M., Imura, T., Kitamoto, D.
J. Oleo Sci., 56: 435-442 (2007).

Kinetic studies on the interactions between glycolipid biosurfactant assembled monolayers and various classes of immunoglobulins using surface plasmon resonance.
Ito, S., Imura, T., Fukuoka, T., Morita, T., Sakai, H., Abe, M., Kitamoto, D.
Colloids Surf. B Biointerfaces, 58: 165-171 (2007).

Loss of a GPI-anchored membrane protein Aah3p causes a defect in vacuolar protein sorting in Schizosaccharomyces pombe.
Iwaki, T., Morita, T., Tanaka, N., Giga-Hama, Y., Takegawa, K.
Biosci. Biotechnol. Biochem., 71: 623-626 (2007).

Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma.
Konishi, M., Morita, T., Fukuoka, T., Imura, T., Kakugawa, K., Kitamoto, D.
Appl. Microbiol. Biotechnol., 75: 521-531 (2007).

A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system.
Konishi, M., Imura, T., Fukuoka, T., Morita, T., Kitamoto, D.
Biotechnol. Lett., 29: 473-480 (2007).

Convenient transformation of the anamorphic basidiomycetous yeasts belonging to the genus Pseudozyma by electroporation.
Morita, T., Habe, H., Fukuoka, T., Imura, T., Kitamoto, D.
J. Biosci. Bioeng., 104: 517-520 (2007).

Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis.
Morita, T., Konishi, M., Fukuoka, T., Imura, T., Kitamoto, D.
Appl. Microbiol. Biotechnol., 74: 307-315 (2007).

Characterization of the genus Pseudozyma by the formation of glycolipid biosurfactants, mannosylerythritol lipids.
Morita, T., Konishi, M., Fukuoka, T., Imura, T., Kitamoto, H.K., Kitamoto, D.
FEMS Yeast Res., 7: 286-292 (2007).

Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317T.
Morita, T., Konishi, M., Fukuoka, T., Imura, T., Kitamoto, D.
J. Biosci. Bioeng., 104: 78-81 (2007).