酢酸発酵の農産資源への応用

北海道立工業技術センター研究開発部バイオテクノロジー科
○宮崎俊一、大坪雅史、青木央、澤谷拓治

1.はじめに
食酢は古くから使われている調味料の一つで、現在はいろいろなタイプの酢が市場に出回り消費量も増加しているが、その製造方法に関しての研究は他の醸造物に比べて少ないのが現状である。食酢醸造においては大部分の工場では種酢仕込みを行い、純粋な酢酸菌を使用することはほとんどない。国内では西日本の各地域でそれぞれの地域の果実を原料とした食酢醸造試験が行われているが、原料は柿やみかんなどの果実が多く、北海道産の果実や野菜は使用されておらず、酢酸菌も菌株保存機関からの分譲株を使用しており、分離した酢酸菌を使用している例はほとんど見られない。そこで食酢が健康食品として見直されている中で、道南、青森地域の農産資源の高付加価値化を図る意味で、地域の特産果実であるマルメロ、リンゴ、あるいはホワイトアスパラガスやカボチャを利用した酢酸菌による発酵技術を検討した。

2.試験方法
(1) 酢酸菌の分離と同定
自然界より酢酸菌を分離するために、食酢製造に実際に用いられている種酢よりもの酢酸菌の分離方法を検討した。種酢を滅菌生理食塩水で適宜希釈後、炭酸カルシウムをインジェクターとした培地（グルコース3％、酵母エキス0.5％、炭酸カルシウム1％、エタノール3％、寒天2％）で30℃、3日間平板培養した。クリアゾーンを生じたコロニーを飼菌して最も酸度が上昇した株を選別した。分離菌株の諸性質を明らかにするために、Berger's Manualにもとづき同定試験を行った。対照としてAcetobacter aceti IAM 1802を使用した。

(2) 農産物の酢酸発酵
分離菌株による農産物の酢酸発酵を効率的に行うための条件について検討した。農産物としてマルメロ、リンゴ、ホワイトアスパラガス、カボチャを使用し、それぞれの果汁、及び搾汁液に必要に応じて窒素源を添加し殺
菌後、エタノールを6％加えた。分離菌の前培養液を果汁量に対し1％接種し30℃で21日間培養後、培養液を0.1N水酸化ナトリウムで滴定し酸度を測定した。

(3) 品質評価
果汁のポリフェノールはFolin-Denis法により分析した。糖度は糖用屈折計、pHはpHメーターで測定した。酢酸濃度はカルボン酸分析計で、エタノール濃度はガスクロマトグラフで測定した。
ホルモール態度素はホルモール滴定法により、還元糖はソモギ法により、全糖は加水分解後、還元糖として求めた。

3.結果
種酵より分離した酢酸菌No.1株の形態学的、生理学的、生化学的性質を検討した結果、No.1株はグラム陰性、非運動性、好気性の桿菌であり、酢酸の再分解性が認められることから、Acetobacter属であることが推定された。さらにグリセリンからのケトン体の生成能、Hoyer-Frateur培地でのアンモニア塩の資化性が認められず、またDNAのGC含量が53.8％であることなどの特徴が明らかになった。（表1）

表1. 酢酸菌の形態学的及び生理学的性質

<table>
<thead>
<tr>
<th></th>
<th>No.1株</th>
<th>A. aceti IAM 1802</th>
</tr>
</thead>
<tbody>
<tr>
<td>形 状</td>
<td>桿菌</td>
<td>桿菌</td>
</tr>
<tr>
<td>運 動 性</td>
<td>－</td>
<td>－</td>
</tr>
<tr>
<td>グラム染色</td>
<td>陰性</td>
<td>陰性</td>
</tr>
<tr>
<td>カタラーゼ活性</td>
<td>＋</td>
<td>＋</td>
</tr>
<tr>
<td>酢酸の再分解性</td>
<td>＋</td>
<td>＋</td>
</tr>
<tr>
<td>グリセリンからのケトン体の生成</td>
<td>－</td>
<td>＋</td>
</tr>
<tr>
<td>Hoyer-Frateur培地での生育</td>
<td>－</td>
<td>＋</td>
</tr>
<tr>
<td>GC含量（％）</td>
<td>53.8</td>
<td>56.8</td>
</tr>
</tbody>
</table>
これらの結果から、No.1株はAcetobacter pasteurianusに属する株と推定された。
次にNo.1株の農産物を利用した酢酸発酵について検討した。リンゴとカボチャについてはいずれの試験区で酸度が上昇し、発酵が順調に進行したが、アスパラガスはあまり発酵が進行しなかった。そこでアスパラガス搾汁液のpHを6.8に調整したところ、窒素源として麦芽エキスを添加した時に発酵が進行し、酸度が上昇した。（表2）
酢酸菌は有機酸を栄養源として利用することができるから、アスパラガス搾汁液にリンゴ酸を0.5％、あるいはクエン酸を0.2％に添加し発酵試験を行った結果、リンゴ酸はほとんど添加効果が認められなかったが、クエン酸の場合、エタノールのみを添加した場合、2週間目で酸度4.5％まで上昇し、添加効果が認められた。
表2. 農産物のNo.1株による酢酸発酵

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>マルメロ原果汁</td>
<td>pH</td>
<td>3.37</td>
<td>3.36</td>
<td>3.47</td>
</tr>
<tr>
<td></td>
<td>酸度 (%)</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>マルメロゼラチン 処理果汁</td>
<td>pH</td>
<td>3.78</td>
<td>3.73</td>
<td>3.64</td>
</tr>
<tr>
<td></td>
<td>酸度 (%)</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>リンゴ</td>
<td>pH</td>
<td>3.18</td>
<td>3.05</td>
<td>2.93</td>
</tr>
<tr>
<td></td>
<td>酸度 (%)</td>
<td>0.3</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>アスパラガス</td>
<td>pH</td>
<td>4.29</td>
<td>6.20</td>
<td>5.90</td>
</tr>
<tr>
<td>pH無修正</td>
<td>酸度 (%)</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>アスパラガス</td>
<td>pH</td>
<td>6.81</td>
<td>3.85</td>
<td>3.22</td>
</tr>
<tr>
<td>pH6.8</td>
<td>酸度 (%)</td>
<td>0.1</td>
<td>0.5</td>
<td>4.6</td>
</tr>
<tr>
<td>カボチャ</td>
<td>pH</td>
<td>2.98</td>
<td>2.78</td>
<td>2.82</td>
</tr>
<tr>
<td></td>
<td>酸度 (%)</td>
<td>0.5</td>
<td>5.2</td>
<td>5.0</td>
</tr>
</tbody>
</table>

実験1：果汁及び搾汁液 実験2：実験1＋エタノール6％
実験3：実験2＋麦芽エキス0.1% 実験4：実験2＋酵母エキス0.1％

マルメロはいずれの試験区も酸度は上昇せず、発酵は進まなかった。マルメロ果汁に含まれる多量のポリフェノール成分が酢酸発酵を阻害していることが考えられるので、マルメロ果汁よりポリフェノール成分を除去す
る方法について検討した。ポリフェノールがタンパク質と結合する性質を持つことから、ゼラチンを果汁量に対し1％添加してセライトろ過を行ったところ、約80％のポリフェノール成分が除去された。（図1）

そこでゼラチン処理果汁を使用して発酵試験を行ったところ、窒素源として酵母エキス0.1％を添加した時に、酸度が上昇し発酵が認められた。（表2）いずれの発酵液も酸度については、JASの果実酢の基準値4.5％以上であり、原料の香りと食酢の香味が混ざった独特なフレーバーを有しており、口当たりがまるやかであることから新しいタイプの醸造酢として期待される。

4.まとめ

種酢から酢酸菌No.1株を分離し、分類学的な検討を行った結果、No.1株はAcetobacter pasteurianusと推定された。No.1株によるマルメロ、リンゴ、ホワイトアスパラガス、カボチャを原料とした酢酸発酵の条件を検討した結果、リンゴとカボチャは搾汁液にエタノールのみを添加した試験区で発酵が進むのに対し、マルメロ、アスパラガスはそれぞれポリフェノール除去処理あるいはpH調整が必要で、さらに窒素源の添加が酢酸発酵に必要であることが示された。

「謝辞」

菌株の性質にご指導、ご助言下さった東京農大柳田薫治教授、北大水産学部絵面良男教授、（株）中塚酢店生化学研究所円谷悦造氏と、種酢を提供して下さった愛媛県工業技術センター平岡芳信研究員に感謝の意を表します。