In situ observation of crack initiation and propagation in CFRP using X-CT

T. Ishii¹, R. Kitazawa¹⁺, H. Kawabe¹, Y. Takeichi¹,², Y. Niwa¹, M. Kimura¹,²

¹ High Energy Accelerator Research Organization (KEK)
² Dept. Mater. Structure Sci., School of High Energy Accelerator Sci., SOKENDAI (The Graduate University for Advanced Studies)
⁺ Present: Katayanagi Advanced Research Laboratories, Tokyo University of Technology

This work was supported by Cross-ministerial Strategic Innovation Promotion Program - Unit D66 - Innovative measurement and analysis for structural materials

Introduction

Carbon fiber and carbon fiber reinforced plastic (CFRP) composite are promising material for application for aircraft and spacecraft by their light weight and high strength and toughness.

Determination of a crack initiation and its propagation mechanism develops innovative application.

In this study, **in-situ** X-ray computed tomography (X-CT) was applied for damage visualization during tensile testing of multi-layered uni-directional CFRP composite, where damage initiation and propagation mechanism can be observed with a spatial resolution.

Experiment

Tensile strain was applied to the specimen with cylindrical pins inserted into four holes of the specimen.

X-CT observations were carried out with mechanical testing.

Results

- **Crack initiation and propagation under tensile stress**
 - Spatial resolution down to 0.6 µm
 - Clear identification: 90° ply cracks, 0° ply splits, and delaminations

- **Strain analysis with FEM**
 - Assumption
 - 0° ply (fiber direction)
 - Tensile strength: 2200 MPa
 - Young’s modulus: 128 GPa
 - 90° ply
 - Tensile strength: 69 MPa
 - Young’s modulus: 8 GPa

- In-plane shear stress
 - Damage
 - Longitudinal tensile stress

> Initiation of cracks occurs in areas where high tensile and shear stress are expected.

Segmentation of crack-types

- Segmentation of crack-types were carried out by image-processing.
 - Change of crack-types were clearly shown:
 - 0° ply splits
 - 90° ply cracks
 - Delaminations

> Segmentation of in-situ crack-type observations

- Purple: 0° ply splits
- Black: 90° ply cracks
- Red: Delaminations

Summary

- It was shown that in situ 3D X-CT provided us the information on crack initiation and its propagation.
- Further observation, including uni-directional CFRP, and its analysis proceeds in order to predict damages in CFRP components.