Development of self-doped PEDOT/Si hybrid solar cells

Introduction

Silicon-Organic Hybrid Solar Cell (SOHC)

• High efficiency (~17%)[1] • Low material cost Easy fabrication Low temperature

Easy to recycle

processes (>300°C)

Challenges

Growth of SiO, Poor junction Defects in interface interlayer [2] PEDOT:PSS layer

This Work

MgF₂ AR layer S-PEDOT Oxide laver n-Si n⁺ BSF layer Au-Sb/Au

Schematic of SOHC fabricated in this study

Aim:

To improve the durability of SOHCs through a combination of high-quality passivation layer and a novel self-doped

Self-doped PEDOT (S-PEDOT) [3]

- Soluble in water
- Better conformality to nano structures
- Less void defects in thin film
- Similar conductivity to PEDOT:PSS
 - S-PEDOT Structure

S-PEDOT

-SO₃H

-SO₃H

- Neutral Beam Oxide (NBO) Layer [4]
- Room temperature process
- >95% pure SiO_2
- 3 nm thin layers in 300 s
- Defect free SiO₂ layer
- Neutral Beam

Device Fabrication

Results and Discussion

Dependence of PV characteristics on NBO film thickness Durability of measured solar cell samples 25 25 • 1 nm thermal oxide interlayer may 1.1 nm Thermal Oxide 0.4 20 a 2 20 ₂ perform better but NBO layers of the NBO (1.4 nm) 1.4 nm 20 (1 nm)

- same thickness show better consistency over multiple samples.
- Oxide interlayers with the highest oxygen saturation (i.e. highest percentage of SiO_2) show the least degradation in photovoltaic performance.
- S-shaped *J-V* curve develops within the first week of storage pointing possible loss in PEDOT carrier concentration

Table for the thickness and saturation of the interlayers:

Preparation	Thickness (nm)	Oxygen Saturation (%)
NBO for 400 s	4.6	95
30 s HF etch after NBO	1.4	83
40 s HF etch after NBO	1.0	43
50 s HF etch after NBO	0.50	55
150 °C for 15 min	1.0	54

Summary

• We fabricated simple planar silicon-organic hybrid solar cells (SOHCs) using a new self-doped PEDOT, which overcomes some of the limitations of PEDOT:PSS. The best performing cells achieved an efficiency of 6.35% with 482 mV in V_{OC} and 21.99 mA/cm² in J_{SC} for a cell with a 1 nm-thick

0.6

0.6

0.5

0.5

Durability of (a) J_{SC}, (b) FF, and (c) V_{OC} of the TO1 (thermal oxide), NO1 (NBO 1.4 nm), NO2 (NBO 1.0 nm), and NO3 (NBO 0.5 nm) samples over time.

interfacial oxide layer.

• Two probable degradation mechanisms caused the development of s-shaped J–V responses:

- (i) reaction of S-PEDOT with unsaturated silicon sub-oxides
- (ii) the degradation of S-PEDOT over time.
- The use of a thin, homogeneous, and highly saturated silicon oxide layer using neutral beam oxidation (NBO) proved effective against mitigating the first factor.

3. Hirokazu Yano et al., Sci. Adv., 2019, 5, eaav9492.

References:

1. D. Zielke et al., Solar Energy Materials & Solar Cells 2014, 131, 110–116.

2. Sara Jackle et al., ACS Appl. Mater. Interfaces 2016, 8, 8841-8848.

4. Seiji Samukawa, Jpn. J. Appl. Phys., 2006, 45, 2395.

Aditya Saha¹、大島隆治²、大堀大介¹,佐々木孝彦²、箭野裕一³,奥崎秀典⁴、菅谷武芳²、 德增崇¹、遠藤和彦¹、寒川誠二¹ 2. 産業技術総合研究所 ゼロエミッション国際共同研究センター 1. 東北大学 4. 山梨大学 3. 東ソー(株)

