Detection of cell cracks and increased series resistance of crystalline silicon PV modules by using the voltage and current at maximum power point

Manit Seapan¹, Yoshihiro Hishikawa², Masahiro Yoshita², Keiichi Okajima¹

1 Department of Risk Engineering, University of Tsukuba 2 Renewable Energy Research Center, AIST

Research purpose

C

- Degradations and failures occur in PV modules during their outdoor operation, such as cell cracks and an increase in series resistance (R_s) .
- Previous detection techniques, such as *I*–*V* curve measurement, had a problem because they needed to interrupt the system operation.

Temperature correction of V_{mp} and I_{mp}

The measured $V_{\rm mp}$ and $I_{\rm mp}$ are corrected to 25 °C using Eqs. (1) and (2) [1], as shown in Fig. 1.

$$V_{\rm mp2} = \left[V_{\rm mp1} + \frac{T_2 - T_1}{T_1} \left(V_{\rm mp1} - \frac{nE_{\rm g}}{q} \cdot N_{\rm c} \right) \right] \times \left[1 + \alpha (T_2 - T_1) \right], \quad (1)$$

$$I_{\rm mp2} = I_{\rm mp1}.$$

- This study utilizes the temperature corrected of current-voltage at maximum power $(I_{mp}-V_{mp})$ curve instead of the *I*-V curve using the new formulas recently proposed [1].
- Cracked cell and increase in R_s were investigated by simulations for detecting degradation using $I_{\rm mp}$ - $V_{\rm mp}$ curve.

Here, T_1 and T_2 is the measured and target module temperature in Kelvin (K), respectively. V_{mp1} and V_{mp2} are the V_{mp} at T_1 and T_2 , respectively. E_g is the bandgap energy of silicon. n is the diode ideality factor, q is the electron charge, N_c is the number of series-connected cells, and α is the temperature coefficient (TC) of the short-circuit current (I_{sc}). α is estimated to have a value of 0.05%/K . $I_{\rm mp1}$ and $I_{\rm mp2}$ are the $I_{\rm mp}$ at T_1 and T_2 , respectively. nE_g/q is estimated to have a value of approximately 1.232 V.

Fig. 1 Measured $I_{\rm mp}$ and $V_{\rm mp}$ are shown by the black symbols. The red symbols show the curve corrected to 25 °C using Eqs. (1) and (2).

Cell crack and effect of R_s

Cell crack

Numerical simulation has been performed to investigate the possible detection of cell cracks using the $I_{\rm mp}-V_{\rm mp}$ curve. A cracked cell is represented by a cell with a reduced active area, as shown in Fig. 2.

The output current of a silicon PV cell for simulation is expressed by the Bishops model [2] as follows:

 $I = I_{\rm ph} - I_0 \left[\exp^{\left(\frac{q(V+IR_{\rm S})}{N_{\rm c}nkT}\right)} - 1 \right] - \frac{V+IR_{\rm S}}{R_{\rm ch}} \left[1 + a \left(1 - \frac{V+IR_{\rm S}}{V_{\rm hr}} \right)^{-m} \right].$ (3)

Here, I_{ph} is the photocurrent, I_0 is the diode reverse saturation current, V is the output voltage, k is Boltzmann's constant, T is the device temperature in K, R_{sh} is the shunt resistance, a is the fraction of ohmic current involved in avalanche breakdown, *m* is the avalanche breakdown exponent, and $V_{\rm br}$ is the junction breakdown voltage.

Effect of R_{s}

Another numerical simulation has been performed for assessing the degradation with increasing R_s . The I_{mp} and V_{mp} of a module, with one of the 36 series-connected cells with increased R_s , were determined from the I–V curve of a module. A model of a module with an increased R_s is shown in Fig. 3, which exhibits the interconnection failure or solder bond failure

Fig. 2. Model of a module with a cell with crack. A black line shows a crack on a cell, and a dark area shows an inactive area.

as an example of increased R_s -based degradation.

Fig. 3. Model of a module with a cell with an increased R_s ; an interconnection failure is an example of degradation by increased $R_{\rm s}$.

Results and discussions

Simulation of cell crack effect

The simulations of the $I_{\rm mp}$ - $V_{\rm mp}$ curves of a crystalline silicon PV module with and without a cracked cell using Eq. (3) were carried out, as shown in Fig. 4 by the blue lines and a red line, respectively. For the cell without a crack, the cell parameters of $I_{\rm ph} = 5.262$ A at irradiance (G) = 1 kW/m², $I_0 = 5.3 \times 10^{-9}$ A, $R_s = 6.4$ mΩ/cell, $R_{sh} = 7$ Ω /cell, n = 1.147, T = 25 °C, a = 0.1, $V_{\rm br} = -30$ V, and m = 4 were chosen to fit the experimental data of Fig. 1. The results show that the $I_{\rm mp}-V_{\rm mp}$ curves with a cracked cell shift toward a higher voltage as the ratio of cracked cell increases (A cracked area from 7% to 14% of the cell area). An illustration of the variation of $I_{\rm mp}$ and $V_{\rm mp}$ by a cracked cell is shown in Fig. 5, where one of the 36 series-connected cells was assumed to have a crack.

Simulation of R_s effect

The simulation results with and without a cell with an increased R_s are demonstrated by the blue lines and a red line in Fig. 6, respectively. The parameters of normal cells (i.e., without an increased R_s) were assumed to be identical to those in Fig. 4. The results suggest that an increase in R_s in the range of 0.1 - 0.6 Ω on one cell can be detected by the $I_{\rm mp}$ - $V_{\rm mp}$ curves. An illustration of the variation of $I_{\rm mp}$ and $V_{\rm mp}$

Fig. 4. $I_{\rm mp}$ – $V_{\rm mp}$ curves of a PV module with and without a cracked cell are represented by blue lines and a red line, respectively.

Fig. 6. $I_{\rm mp}$ – $V_{\rm mp}$ curves of a PV module with and without an increase in R_s are represented by blue lines and a red line, respectively.

by an increase in R_s is shown in Fig. 7, where one of the 36 seriesconnected cells was assumed to have an increased R_s .

14 15 16 17 18 19 20 Voltage (V) 16 17 18 19 20 13 Voltage (V) Fig. 5. An illustration of the variation of the $I_{\rm mp}$ and $V_{\rm mp}$ by Fig. 7. An illustration of the variation of the $I_{\rm mp}$ and $V_{\rm mp}$ by the effect of cracked cell. the effect of in crease in R_s .

Conclusion

- This method uses the new formulas corrected time-series data of $V_{\rm mp}$ and $I_{\rm mp}$ for temperature.
- Only the $V_{\rm mp}$, $I_{\rm mp}$, and module temperature are necessary without other module-specific parameters, such as the TC.
- We firstly utilize the $I_{\rm mp} V_{\rm mp}$ curve to identify a cracked cell and increase in $R_{\rm s}$ in the PV module.
- The results are applicable to a single PV module and multiple PV modules connected in series.
- The proposed method can be flexibly applicable for various types of PV modules and systems as it uses only the $V_{\rm mp}$, $I_{\rm mp}$, and module temperature.

Acknowledgment

This work was supported in part by NEDO under METI

References

[1] M. Seapan, Y. Hishikawa, M. Yoshita, K. Okajima. Temperature and irradiance dependences of the current and voltage at maximum power of crystalline silicon PV devices. Sol. Energy, vol. 204, 459-465, (2020). [2] J.W. Bishop. Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits. Sol. Cells, vol. 25, 73-89, (1988).

