▶ Research Center for Photovoltaics 高効率結晶シリコン太陽電池の 実使用条件下の発電性能の経時変化

石井 徹之*1・崔 誠佑2・佐藤 梨都子2・千葉 恭男2・増田 淳2 1電力中央研究所 材料科学研究所 電気材料領域 2産業技術総合研究所 太陽光発電研究センター モジュール信頼性チーム

【謝辞】本研究は国立研究開発法人新エネルギー・産業技術総合開発機構の委託により行なわれました。

研究の目的

近年、p型PERC型結晶シリコン太陽電池の高効率化が目覚 しく、今後の太陽電池市場において主流になると予想されてい る。また、n型基板を用いるSHJ型太陽電池やIBC型太陽電池 は、極めて高い変換効率を有する。しかし、これらの高効率な 結晶シリコン太陽電池の年劣化率は、従来型のp型AI-BSF型 太陽電池と比較して高いことが指摘されている^[1,2]。産総研九 州センターでは、様々な種類の太陽電池の実使用条件下の長 期信頼性の調査を行っている^[1,3-8]。本研究では、2016年6月よ りおよそ3年間実運用されている高効率結晶シリコン太陽電池 の発電性能の経時変化について調査した。

a .:			を採用しているマルチョ		
Section	Kinds P	Nominal MAX (kW)	Array Configuration	Installation Mon/Year	トリング式パワーコンディ
E-1A p-	-type sc-Si	5.04	$7S\times 1P\times 4A$	09/2010	ショナーを使用。
E-1B p-	-type sc-Si	4.90	$5S \times 1P \times 4A$	12/2012	
E-2A p-1	type mc-Si	5.00	$6S \times 1P \times 4A$	09/2010	■ 太陽光発電ンステムの
E-2B p-1	type mc-Si	5.00	$5S\times 1P\times 4A$	12/2012	直流雷路側け非接地
W-2A n-	-type SHJ	4.80	$5S\times 1P\times 4A$	12/2012	
W-2B n-	-type IBC	4.68	$6\text{S}\times1\text{P}\times4\text{A}$	12/2012	● 屋内測定出力/初期屋
M-3C n-	-type SHJ	1.55	$5S\times 1P\times 1A$	06/2016	内測定出力の堆移 及
M-3D n-	-type sc-Si	1.89	$7S \times 1P \times 1A$	06/2016	
W-1A n-	-type SHJ	1.25	$5S\times 1P\times 1A$	06/2016	ひ、標凖試験条件に換
W-1B n-	-type IBC	1.05	$5S\times 1P\times 1A$	06/2016	質 た层外出力(DD)
W-1C p-t	type PERC	1.48	$5S\times 1P\times 1A$	06/2016	
W-ID p-t	type PERC	1.45	$5S \times 1P \times 1A$	06/2016	の推移を調査。

結果と考察

Fig. 3 Change in parameters of *HV* curves of the six types of the PV modules 結論 Table II Annual degradation rates calculated for three years Index (%/year) M-3C W-1A W-1B M-3D W-1C W-1D n-type SHJ) (n-type SHJ) type sc-Si) 07/2016~06/2019 (n-type IBC) type PERC) (p-type PERC) P_{MAX} under STC 0.2 1.6 0.8 09 15 04 0.6 0.0 Outdoor PR 12 2型式の太陽電池を除いて、ソーラシミュレータによる屋内測定出力と 屋外測定出力から算出される年劣化率はほぼ一致した。 W-1CのPERC型太陽電池の屋内測定出力は明確なLIDを示したが、 屋外測定出力は設置時にLIDが起こり既に低下していたと推察される。 ● W-1AのSHJ型太陽電池は最大の年劣化率を示し、IscとFFの低下が 顕著であった。EL画像は外周部のセルの発電性能の低下を示唆する。

Fig. 5 Change in EL images of the n-type SHJ (W-1A) modules.

参考文献

- [1] T. Ishii and A. Masuda, Prog. Photovolt.: Res. Appl. 25, 953 (2017).
- [2] D. C. Jordan et al., IEEE J. Photovolt. 8, 177 (2018).
- [3] T. Ishii et al., Jpn. J. Appl. Phys. 56, 08MD05 (2017).
- [4] S. Choi et al., Jpn. J. Appl. Phys. 56, 08MD06 (2017).
- [5] Y. Chiba et al., Jpn. J. Appl. Phys. 57, 08RG04 (2018).
- [6] S. Choi et al., Thin Solid Films 661, 116 (2018).
- [7] R. Sato et al., Jpn. J. Appl. Phys. 58, 052001 (2019).
- [8] R. Sato et al., Jpn. J. Appl. Phys. 58, 106510 (2019).