Temperature and Irradiance Dependences of the Current and Voltage at Maximum Power of Crystalline Silicon PV Modules

Manit Seapan¹, Yoshihiro Hishikawa², Masahiro Yoshita², and Keiichi Okajima¹ ¹Department of Risk Engineering, University of Tsukuba

²Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology

 $I = I_{sc} - I_0 \exp\left(\frac{q(V+IR_s)}{N_c nkT}\right) - \frac{V+IR_s}{R_{sh}}$

 $-\frac{dV}{dI}\Big|_{mp} = \frac{V_{mp}}{I_{mp}}$

 $I_{mp} = V_{mp} \cdot \frac{\frac{1}{R_{sh}} + \frac{qI_0}{N_c nkT} \exp\left(\frac{q(Vmp+ImpR_s)}{N_c nkT}\right)}{1 + \frac{R_s}{R_{sh}} + \frac{qI_0 R_s}{N_c nkT} \exp\left(\frac{q(Vmp+ImpR_s)}{N_c nkT}\right)}$

1.05

្មិ 1.00

0.95

The derivative of V in (1) with respect to I at MPP

Purpose

Formulas of $I_{\rm mp}$ and $V_{\rm mp}$

and the following is satisfied,

The $I_{\rm mp}$ can be expressed as follow

This study analytically and experimentally investigated expressions for the temperature and irradiance dependences of current at maximum power $I_{\rm mp}$ and voltage at maximum power $V_{\rm mp}$ of crystalline silicon solar cells. Based on these results, a new formula for temperature correction of $V_{\rm mp}$ was discussed. The simple formula for estimating maximum power point (MPP) P_{max} was presented, which was derived from the corrected $I_{\rm mp}$ and $V_{\rm mp}$. The correction formulas were investigated without information on current-voltage (IV) curve parameters or diode parameters.

Simulation of the temperature and irradiance dependences of $I_{\rm mp}$

From Eq. (1), we obtain

$$I_{mp} = I_{sc} + I_{sc}(T - T_0) - A \cdot \exp\left(\frac{q(V_{mp} + I_{mp}R_s)}{N_c nkT} - \frac{E_g}{kT}\right) - \frac{V_{mp} + I_{mp}R_s}{R_{sh}}.$$
 (4)

Here, α is the temperature coefficient of I_{sc} which is assumed to be 0.05%/K, $T_0 = 25$ °C (298.15 K), N_c is the number of seriesconnected cells in the module, and I_0 is assumed to be expressed as $I_0 = A \cdot \exp\left(\frac{-E_g}{kT}\right)$. Here, A is constant parameter and E_g is the bandgap energy. The $E_{\rm g}$ was assumed to be 1.12 eV [1]. The results show that the temperature coefficient of $I_{\rm mp}$ is within ±0.015 or 0.02%/K and the nonlinearity of $I_{\rm mp}/G$ is within ±0.013.

Fig. 4. The V_{mp1} is measured V_{mp} and V'_{mp2} is corrected V_{mp} by Eq. (5).

 $V_{mp2} = V'_{mp2} + V'_{mp2} \times \alpha (T_2 - T_1).$ (11)

The P_{max} at the target temperature can be estimated if the G is known by a separate measurement,

$$P_{max2} \cong V_{mp2} \times \frac{1000}{G_1} I_{mp1}.$$
 (12)

Equations (5) and (11) were used for the outdoor experimental $V_{\rm mp}$ of a commercial crystalline silicon PV module. Here, the nE_g/q = 1.2 V was chosen from the best-fit to experimental data. The N_c of the module is 36.

Module temperature (K) Fig. 2. Normalized I_{mp} vs. module temperatures at 1 kW/m².

2/ceii 10⁻¹² - 5.009 x 10⁻⁸ A

0.003 - 0.007 Ω/cell

300 315 330

The output current I of the PV module can be approximately expressed as follow,

(1)

(2)

(3)

₹ 4

Translation equation

As discussed in the previous sections, the I_{mn} is nearly constant for a wide range of temperature variation. Therefore, the translation formula for voltage from [2] can be used as follow,

$$V'_{mp2} = V_{mp1} + \frac{T_2 - T_1}{T_1} (V_{mp1} - \frac{nE_g}{q} \cdot N_c).$$
(5)

Considering the slight temperature dependence of I_{sc} Eq. (5) can be corrected as follows,

$$V_{mp2} - V'_{mp2} = \frac{N_c n k T_2}{q} \ln \left(\frac{I_{sc2} - I_{mp1}}{I_{sc1} - I_{mp1}} \right)$$
(6)
$$\frac{\partial V_1}{\partial V_1} = \frac{V'_{mp2}}{Q} + \frac{\Delta V_1}{Q} = \frac{\Delta V_1}{Q} + \frac{V'_{mp2}}{Q} + \frac{\Delta V_1}{Q} = \frac{V_1}{Q} + \frac{V_1}{Q} + \frac{V_1}{Q} + \frac{V_2}{Q} + \frac{V_1}{Q} + \frac{V_1}{Q} + \frac{V_2}{Q} + \frac{V_1}{Q} + \frac{V_1}{Q} + \frac{V_1}{Q} + \frac{V_1}{Q} + \frac{V_1}{Q} + \frac{V_2}{Q} + \frac{V_2}{Q} + \frac{V_1}{Q} + \frac{V_1}{Q} + \frac{V_2}{Q} + \frac{V_2}{Q} + \frac{V_1}{Q} + \frac{V_2}{Q} + \frac{V_2}{Q} + \frac{V_1}{Q} + \frac{V_2}{Q} + \frac{V_1}{Q} + \frac{V_2}{Q} + \frac{V_2}{Q}$$

$$\frac{\partial V}{\partial l}\Big|_{mp} = \frac{V'_{mp2}}{l_{mp1}} = \frac{\Delta V}{\Delta l}$$
(7)
$$\Delta V = V'_{mp2} \frac{\Delta l}{\Delta l}$$
(8)

$$\Delta V = V'_{mp2} \frac{\Delta I}{I_{mp1}}$$

if R_s is small, $\Delta I \cong I_{sc} \cdot \alpha (T_2 - T_1)$.

If we approximate $\frac{l_{mp}}{l_{sc}} \approx 1$,

$$\Delta V \cong V'_{mp2} \times \alpha (T_2 - T_1). \tag{10}$$

The equation for temperature correction of $V_{\rm mp}$, which does not include I_{sc} , can be expressed as follow.

Conclusion

• From the experiments and simulations by using single diode model, the $I_{\rm mp}$ is shown to be nearly constant for temperature range about 0-70 °C. The simulation showed that the $I_{\rm mp}$ is nearly proportional to G in the irradiance range between 0.5 and 1.2 kW/m².

(9)

- The $I_{\rm mp}$ - $V_{\rm mp}$ curves corrected to 25 °C by the formula showed good reproducibility for many days.
- The P_{max} also showed good reproducibility with the standard deviation within 3.3% for the irradiance range between 0.2 and 1.2 kW/m².
- These results are useful for characterizing the performance of crystalline silicon PV cells and modules by using the $I_{\rm mp}$ and $V_{\rm mp}$ values.

Experimental results

Fig. 5. Experimental $I_{\rm mp}$ vs. $V_{\rm mp1}$ and $V_{\rm mp2}$ plots for 28 days.

Acknowledgment

This work is in part supported by NEDO under METI.

References

- S. M. Sze and K. K. Ng, *Physics of Semiconductor Devices*, 3rd ed., John Wiley & Sons, Inc. New Jersey, 720-725 (2006).
- [2] Y. Hishikawa, T. Doi, M. Higa, K. Yamagoe, H. Ohshima, T. Takenouchi, and M. Yoshita, "Voltage Dependent Takenouchi, and M. Yoshita, "Voltage Dependent Temperature Coefficient of the *I-V* Curves of Crystalline Silicon Photovoltaic Modules," *IEEE Journal of* Photovoltaics, vol. 8, no. 1, 48-53 (2018).

13 14 15 16 17 18 12 V.... (V)