

Research Center for Photovoltaics

連続加速試験によるフレーミング現象の再現

[°]棚橋 紀悟¹, 櫻井 啓一郎¹, 塩田 剛史², William Gambogi³, Nancy H. Phillips³, Kaushik Roy Choudhury³, Sergiu Spataru⁴, David C. Miller⁵, Michael Kempe⁵, Michael Owen-Bellini⁵, Peter Hacke⁵ ¹産業技術総合研究所, ²三井化学, ³DuPont Photovoltaic Solutions, USA, ⁴Aalborg University, Denmark, ⁵National Renewable Energy Laboratory, USA

Field Observations

Summary

The **"Framing"** (local discoloration along cell edges) was induced by a simple sequential accelerated stress test (consisting of hygrothermal- and UV-stressors: **Panel 1**) applied to the PV modules with high OTR (oxygen transmission rate) backsheet, irrespective of the inclusion of UV-absorber in poly(ethylene-co-vinyl acetate) (EVA) encapsulant.

UV-fluorescence (UV-FL) imaging of the PV modules suggests that the spatially-inhomogeneous degradation of EVA material under UV-irradiating conditions is correlated to this "Framing" indicating an underlying common mechanism. These findings would contribute to the development of test procedures to broadly mimic the actual failures observed in fielded PV.

Results

The authors wish to thank K. Ogawa, Y. Chiba, and A. Masuda (AIST) for their supports, and the volunteers on Japan team of Photovoltaic Quality Assurance Taskforce (PVQAT) for their helpful discussion. A part of this work was supported by the New Energy and Industrial Technology Development Organization, Japan.

