

Research Center for Photovoltaics

The PID delay effect by UV light irradiation for p-type crystalline Si solar modules based on the different refractive indexes of silicon nitride layer

Dong C. Nguyen¹, Yasuaki Ishikawa¹, Sachiko Jonai^{1,2}, Kyotaro Nakamura³, Atsushi Masuda², Yukiharu Uraoka¹

¹Division of Materials Science, Nara Institute of Science and Technology ²National Institute of Advanced Industrial Science and Technology ³Toyota Technological Institute

2. Experimental procedure

 \checkmark Si solar modules with different refractive indexes of SiN_x layer: 1.95; 2.05 and 2.20.

- How does the PID delay effect occur in Si solar cells with SiN_x layers of different refractive indexes?
- Wavelength: 320 nm \pm 5 nm
- Photon flux density: $1.03 \times 10^{15} \text{ cm}^{-2}\text{s}^{-1}$

3. Results and Discussion

<u>3. 1. Electroluminescence images of Si solar modules with different refractive indexes of SiN_x</u>

3. 2. Comparison of Si solar module performances with different refractive indexes of SiN_x

- 2.05 after long PID duration up to 6 days.

4. Conclusions

- \checkmark Solar cells with the higher SiN, refractive index is avoidable from PID phenomenon.
- \checkmark PID delay effect is most clearly observed in solar cells with a SiN_x refractive index of 2.05 for long PID duration up to 6 days.
- Conductivity increased by UV light irradiation is responsible for the PID delay effect. \checkmark

References

[1] A. Masuda, Y. Hara, Jpn. J. Appl. Phys. 57, 08RG13 (2018). [2] D. C. Nguyen et al., Proc. 46th IEEE Photovoltaic Specialists Conference, Chicago, USA, 2019.

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.