p型c-Si太陽電池モジュールの PID計算機モデルの開発

吉田 弘樹¹、亀山 展和¹、大橋 史隆¹、傍島 靖¹、増田 淳²、野々村 修一¹ ¹岐阜大学 ²産業技術総合研究所 太陽光発電研究センター

研究の目的

Si太陽電池モジュールの劣化現象であるPIDについて、Na等の不純物に関す るSiN,膜表面上での分布[1]やテクスチャ構造における電界による移動 [2]に関 する報告がある.また、PIDのメカニズムに関して、SiN,膜内の電界による不純 物の移動が一つの要因として報告されている[3][4].しかしながら、機器分析装 置等で不純物の分布を評価するには試料を破壊せざるを得ず、同一試料にお ける不純物分布の経時変化を評価するのは困難である.そこで、PID計算機モ デルとしてNaイオンの熱拡散と電界ドリフトを扱い[5][6]、Naイオン分布の経時 変化をシミュレーションする.シミュレーションとPID試験との結果を比較すること で、Naイオン移動の機構を検討する.

実験

以下の式(1),(2)で	示すNaイオンの熱拡	散と電界ドリフトを	PID計算機モデルとし
て与える.			

$\frac{\partial F_{Na}(z,t)}{\partial t} = -D_{Sa}$	$\frac{\partial C_{Na}(z,t)}{\partial z} + \mu_{SiNx,Na} q C_{Na}(z,t) E(z)$	(1
$\frac{\partial F_{Na}(z,t)}{\partial z} = -D_{Sa}$	$_{iNa}\frac{\partial C_{Na}(z,t)}{\partial t} + \mu_{SiNa}qC_{Na}(z,t)E(z)$	(2

ここで、 F_{Na} はNaイオンのフラックス、 C_{Na} は密度、Eは電界である。Dは拡散係数、mは移動度であり、それぞれの添え字SiN_NaはSiN,膜中での、Si,NaはSi中での、Naに対する値である事を意味する。また、zはSiN,膜表面からの距離であり、Si側を正の向きとする。tはPID試験開始後の時間である。表1にSiN_と単結晶SiのDとmを示す。Siに関しては表中の転位拡散(displacement)を用いた。

表1 SiN、とSiにおけるDとµの値

	$SiN_x[7]$	Si [8]		
		Non-defective Si	Dislocation in Si	Stacking faults in Si
$D [\mathrm{cm}^2/\mathrm{s}]$	~10-18	2.1 × 10 ⁻²²	5.41 × 10 ⁻¹⁷	3.36 × 10 ⁻⁷
μ [cm ² /V·s]	~10-15	8.12 × 10 ⁻²¹	2.09×10^{-15}	1.30×10^{-5}

図1に示すのはPID試験前のNaイオンの分布密度であり、横軸で0 $\leq z \leq$ 80 nmの領域はSiN,膜, $z \geq$ 80 nmはSiである。モジュールのカバーガラス表面に対する電極への印加電圧は0 kV, セル温度は85°Cとし、SiN,表面(z = 0)における C_{Na} の境界条件を1.0 arb. unitsに固定してある. この状態で24 h経過させたのち、PID試験開始条件としてt = 0 hで電極への印加電圧を0 kVから -1 kVに変える.

結果

図2に示すのは、前述のPID計算機モデルを用いて得たNaイオン分布密度の 経時変化である.上から順にPID試験時間t=0hから6h毎の分布を示している. PID試験直後にSiN,膜近傍に分布していたNaイオンが、PID試験開始と共に SiN,膜中を拡散しながらzの正方向にドリフトし、Si膜との境界に達し、さらにSi中 を拡散している.

考察

PID試験開始後、Naイオンは数時間のオーダーでSiN,膜とSiとの境界に達する.SiN,膜内の高い電界によりNaイオンはSiN,膜側からSi側に侵入する.逆に、Si 側から再びSiN,膜側に拡散するNaイオンの密度は低く無視できる.したがって、その後NaイオンはSi側のみで熱拡散する.

今回のNaイオンの転位拡散を扱った数値計算では、Si側を転位拡散するNaイオンは数十時間のオーダーでSiN,膜近傍に分布する事が分かった.一方、PID試験結果[3][4]からNaイオンはより短い数時間のオーダーで発電層に到達すると考えられ、転位拡散では説明ができない.そこで、Naイオンが発電層に到達する 機構として拡散係数が10桁大きい格子欠陥中の拡散が示唆される.

結論

PID計算機モデルとしてSiN,膜とSiにおけるNaイオンの拡散とドリフトを扱い, Naイオンの移動を数値計算した.Naイオンは数時間のオーダーでSiN,膜とSi との境界に達する.その後,NaイオンはSi側のみで熱拡散する.PID試験結 果と比較し,NaイオンはSi中の格子欠陥を拡散すると考えられる.

謝辞

本研究はNEDOプロジェクトの一環として行われました。関係各位に深く感 謝いたします。

参考文献

- [1] F. Ohashi et al., Jpn. J. Appl. Phys. 57, 08RG05 (2018).
- [2] 橘他, 第66回応用物理学会春季学術講演会, 東京, 10p-W611-8 (2019).
- [3] 城内他, 第66回応用物理学会春季学術講演会, 東京, 10p-W611-5 (2019).
- [4] 增田, 第80回応用物理学会秋季学術講演会, 札幌, 19p-B12-8 (2019).
- [5] 吉田他, 第80回応用物理学会秋季学術講演会, 札幌, 21p-B12-1 (2019).
- [6] H. Yoshida *et al.*, PVSEC 29, China, 7MoP.40/773 (2019).
- [7] M. Wilson *et al.*, Solar Energy Materials & Solar Cells **142**, 102 (2015).
- [8] J. Yang *et al.*, WCPEC 7, Hawaii, 1081 (2018).