酸化的な過酸化水素生成の高効率化を目指した BiVO₄/WO₃光電極に対するAI₂O₃表面修飾法の検討

宮瀬 雄太*1,2 井口 翔之*1 三石 雄悟*1 郡司 天博*2 佐山 和弘*1,2

- *1産業技術総合研究所 太陽光発電研究センター 機能性材料チーム
- *2東京理科大学

研究の目的 ✔HCO3 を用いた酸化的な過酸化物生成 ✔湿式法(MOD法)を用いたAl₂O₃による電極表面修飾 K. Fuku, K. Sayama, Chem. Commun., 52, 5406 (2016). K. Fuku et al., RSC Advances, 7 (75), 47619 (2017) 電解液: 2.0 M KHCO₃ aq. 電解液: 2.0 M KHCO₃ aq. (3極式) 『中性条件』 + 『高効率水素製造』を伴う production 100 Al₂O₃/BiVO₄/WO₃ 酸化的な過酸化水素製造 cm-BiVO₄/WO₃ 90 Ē ・通常の水分解: for H₂O₂ Current density $2H_2O \rightarrow 2H_2 + O_2$ efficiency 活用法が未確立 H₂O₂ Al₂O₃/BiVO₄/WO₂ ・酸化的な過酸化水素生成: 50 BiVO₄/WO₃ H20 H₂O $4H_2O \rightarrow 2H_2 + 2H_2O_2$ 10 12 BiVO₄/WO₃ Reaction time / min 酸化分解を抑制し選択率向上 電気化学特性が大きく低下 ✓湿式法で修飾したAl₂O₃の構造 光電極表面を不導体のAl₂O₃が広く被覆 ✓電極調製法 ·BiVO₄ / WO₃ / FTO (top / side view) ✓H₂O₂生成反応 •BiVO₄/WO₃電極 ·Al₂O₃修飾(CVD法) Red Ox WO₃層 BiVO₄層 光雷極 装置:SAL3000Plus (1.2 cm × 6.0 cm) FTO WO₃層 サンプルヒーター: 150℃ ·Al₂O₃/BiVO₄/WO₃/FTO (top / side view) Bi, V 塗布剤 前駆体:トリメチルアルミニウム WCl₆1.0 g +DMF 5 mL (Bi:V=1:1 +エチルセル ロース スピンコート 500℃ 焼成

結果

CVD法による光電極のAl。O。修飾を検討

→電気化学特性を維持したまま選択率の 向上を目指す

✓CVD法とMOD法の性能比較

550℃ 焼成

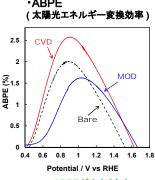
✓CVDサイクル数の最適化 電解液: 0.5 M KHCO₃ aq. production 70 0.05 0.04 H₂O₂ 50 0.03 Faradaic efficiency for <u>A</u>203 30 0.02 20 10 Number of CVD cycle

CVD5サイクルで最大のFE

·H₂O₂生成能 電解液: 2.0 M KHCO3 aq. 90 بة 30 م efficiency 60 production 50 40 30 20 MOD Bare

WCl₆0.5 g

+DMF 5 mL スピンコート


500℃ 焼成

MOD法と同等のH2O2生成能

電解液: 2.0 M KHCO3 aq. (3極式) / mAcm density Bare Potential / V vs RHE

·光電気化学特性

修飾後も光電気化学特性を維持

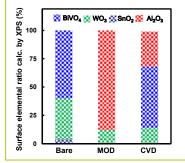
Nafion膜

KHCO₃ aq. (35 mL)

擬似太陽光 (AM1.5 G)

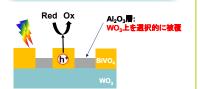
0.9 V - 1.0 V

Fe²+による呈色法


光源

外部電圧

定量法


ABPEが大きく向上

✓乾式法で修飾したAl₂O₃の構造

・表面被覆率の変化 ·MOD法

BiVO₄: **60%→0%**, WO₃: 36%→12% ·CVD法 BiVO₄: **60%→54%**, WO₃: 36%→14%

結論

CVD法を用いてAl2O3修飾を行うことで電気化学特性を維持したまま H₂O₂生成能を向上させることに成功した。

- ✓CVDサイクル5回で最も高いFEとなり、MOD法と同等の過酸化水 素生成能に達した。
- ✓CVD法による修飾による光電気化学特性の低下は非常に小さく、 ABPEは未修飾の電極と比較して大きく向上した。
- ✓Al₂O₃はWO₃上を選択的に被覆していることが想定された。