IZO透明電極を用いた半透明型有機薄膜 太陽電池におけるp型バッファ層の効果

◎ 柔野 航平^{1,2}・小江 宏幸²・近松 真之²・吉田 郵司²・渡邊 康之³・西川 英一¹ ¹東京理科大学, ²産業技術総合研究所 太陽光発電研究センター 有機系薄膜チーム, ³公立諏訪東京理科大学 E-mail:4318701@ed.tus.ac.jp

研究背景

• 半透明型有機薄膜太陽電池(ST-OPV)は、上部電極に透明 導電膜を使用しており、有機半導体のもつ光透過性や着 色の自由度の高さなどの特長を活かすことが可能。

Research Center for Photovoltaics

- ST-OPVの利点を活かして、建材一体型太陽電池、自動 車のリアガラス、農作物を栽培しながら発電が可能な ソーラーシェアリング等への展開に期待できる。
- 有機半導体の持つ光透過性の特長を活かすため、上部電極を非加熱成膜でも導電性が高く、有機発電層への低ダメージで成膜が可能なIndium zinc oxide (IZO)を採用した。

研究の目的

- 現状の素子構造で用いられているp型バッファ材料の PEDOT:PSSが強酸性であるため、IZOを劣化させる課題がある。
- 本研究では、p型バッファ材料であるMoO₃、WO₃-NPs、 HATCNの3種類の材料を選択し、IZOを用いたST-OPVの発電特 性に対して有効性を検証した。

Ar (ccm)	O₂ (ccm)	Base gas pressure (Pa)	Total gas pressure (Pa)	Substrate temperature (°C)	DC Power (W)	Time (min)
40	0.08	4.0 × 10 ⁻⁴	0.35	R.T.	50	40

結果 & 考察

- ✓ IZOを逆構造型OPVの上部電極に使用する際、最も有効なp型バッファ材料 はMoO₃であった。
- ✓ MoO₃の最適膜厚は15 nmであり、PCEの値は4.84%で最も高い値が得られた。
- ✓ 作製したST-OPVの透過率は、波長 550 nmにおいて20%程度であった。

参考文献

- [1] T. Stubhan et al., Adv. Energy Mater., 2, 1433 (2012).
- [2] M.-C. Jung et al., Org. Electron. 52, 17 (2018).

