

Towards 22% high-efficiency p-type PERC solar cells

S. Joonwichien. Y. Kida M. Moriya S. Utsunomiya K. Shirasawa H. Takato 産業技術総合研究所 再生可能エネルギー研究センター 太陽光チーム

The concept of advanced Si-based solar cells with a dielectric passivation layer at the rear of the cell is one of the most promising structures for changing the std. cell into a more-efficient PERC. The presence of a passivation layer at the rear of the cell permits low surface-recombination velocities, a steadier flow of electrons, and an improved performance. Consequently, excellent rear-surface passivation is one of the most important issues in improving the efficiency of PERC structures.

Loss analysis of PERCs

Saint-Cast et al. [1] conducted a loss analysis of PERCs and reported that

- more than half of the recombination events occur in the emitter and under the front contacts,
- second important loss channel is associated with passivation at the rear surface.

P. Saint-Cast et al., Phys. Status Solidi A 214, 1600708 (2017).
 A. Rohatgi et al., Proc. 17th EUPVSEC, 1307-1310 (2001).
 B. Min et al., Energy Procedia 55, 115–120 (2014).

Ways towards 22% high-efficiency PERC

Reducing recombination on the emitter and front metal grid by the implementation of a selective emitter (SE) structure [2, 3].

1. Selective emitter (SE) formation by wet chemical etch-back process

2. Rear surface passivation schemes

□ Reducing recombination at rear structure

1. Local contact opening (LCO) 2. Rear surface passivation

3. Metallization material (Si-free Al paste, Al paste with Si)

Effect of LCO (Rear)

LCO shape	$J_{ m sc}$	V _{oc}	FF	Eff
Line	38.6	646	80.8	20.2
Dash	39.5	651 0	79.7	20.5
0.9 mA/cm ² 5 mV				

Dash-shaped LCO increases the passivation areas, thereby improved $V_{\rm oc}$ and $J_{\rm sc}$.

Dot-shaped LCO for PERC can provide an

additional 5 mV.

[5] S. Joonwichien et al., Sol. Energy Mater. Sol. Cells 186, 84-91 (2018).

Effect of Si in Al	paste	(Rear
--------------------	-------	-------

All *I-V* improved Voids reduced 5 times (25% > 5%)

Al paste		$J_{ m sc}$	V _{oc}	FF	Eff	
Si-free paste		37.8	635	78.7	18.9	
Al paste + Si powder		38.3	645 0	81.1 •	20.1 0	
0.5 mA/cm ² 10 mV 2.4% 1.2						
	Si-free Al paste		Al paste contai	ning Si		
Hypo-alloys	89	RECORDS	-	12040		
Hyper-alloys				A THOMAS	Hypo-alloys	

[6] S. Joonwichien et al., IEEE J. Photovolt. 8, 54-58 (2018).