

Research Center for Photovoltaics

Impacts of V/III ratio on the performance of GaAs p-n solar cells by ultrafast MOVPE

H. Sodabanlu¹, A. Ubukata², K. Watanabe¹, T. Sugaya³, Y. Nakano⁴, and M. Sugiyama^{1,4} ¹Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan ²Taiyo Nippon Sanso Corporation, Ibaraki, Japan ³National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan

⁴School of Engineering, The University of Tokyo, Tokyo, Japan

METHOD

REASERCH BACKGROUND

From our latest report on high speed grown GaAs¹⁻²⁾
 GaAs SCs have no degradation when growth rate was increased.
 Growth rate of 80 µm/h with high V/III ratio of 40

In this study

- Investigate effects of V/III ratio on
- quality of GaAs grown at 90 µm/h
- Compromised point between material
- cost (AsH₃) and cell efficiency

RESULTS AND DISCUSSION

Investigated PV structure

p-GaAs contact 1E19 cm⁻³ 0.05 μm p-InGaP window 3E18 cm⁻³ 0.025 μm p-GaAs emitter 2E18 cm⁻³ 0.2 μm

n-GaAs base 4E17 cm⁻³ 2 μm

n-AlGaAs BSF 3E18 cm⁻³ 0.05 μm n-GaAs substrate 1E18 cm⁻³

Layer	GR. (µm/h)	V/III	T _g (°C)
Contact	5	20	600
Window	1.9	100	600
Emitter	20	20	680
Base	90	5/10/20/40	680
BSF	5	40	680
Buffer	5	20	680

Dependences of V_{oc}, J_{sc} and efficiency on V/III ratio of n-GaAs base

Taiyo Nippon Sanso, HR3335

Growth rate: 90 µm/h with various V/III ratios

n-GaAs substrate 2º off toward <110>

enhance growth rate

Growth conditions:

Total gas flow: 10 SLM

Reactor pressure: 6 kPa

Reactor temperature: 680°C

Customized gas flow channel to

Defects and traps are responsible for these degradations.

Average efficiency decreased from 18.69 to 18.56, 18.00 and 16.53% with lowering V/III ratio from 40 to 20, 10 and 5, respectively.

GaAs p-n solar cells with AlGaAs BSF layer

- Vary V/III ratio of 90 µm/h n-GaAs base layer
 Doping in n-GaAs compensated with
- background p-type doping
 - Decrease in J_{sc} with lowering of V/III ratio caused by EQE degradation at wavelength corresponding to active range in n-GaAs base layer
 - High background carbon³ and compensation doping might induce defects and traps demoting photo-carrier extraction efficiency.

CONCLUSIONS

- Investigate a compromise between material cost (AsH₃) and solar cell efficiency
- GaAs p-n solar cells with n-GaAs grown with various V/III
- •Degrade in both V_{oc} and J_{sc} by lowering V/III caused by defects in n-GaAs base layer
- With current reactor design and growth conditions
- •For 90 µm/h GaAs, a V/III ratio of 20 is recommended for good GaAs cell efficiency.

REFERENCES

- H. Sodabanlu *et al.*, in 44th IEEE PVSC, Washington D. C., 25-30 June 2017.
- [2] H. Sodabanlu, A. Ubukata, K. Watanabe, T. Sugaya, Y. Nakano and M. Sugiyama, IEEE J. Photovolt. 8, 887, 2018.
- [3] C. R. Abernathy and W. S. Hobson, J. Mater. Sci. Mater. Electron., 7, 1, 1996.
- A part of this study was supported by NEDO project: the research and development of ultra-high efficiency and low-cost III-V compound semiconductor solar cell modules.