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Challenge to saw thinner wafers using thinner diamond wires

» The diamond wire should possess high qualities to saw thin silicon wafers with a
high processing yield.

» The diamond particles should be uniformly sized and highly dispersed without
agglomerations on the wire.

» We have developed two types (100d-M6/12 and 80d-M6/12) of diamond wires,
where 100d and 80d are diameters of core wires, and M6/12 shows the range of
diamond particle sizes. We obtained wafers with thicknesses of 200 and 120 pm in
processing yields of 100 and 96%. 190
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Figure 1. Road map for wafering
technology for mono-Si, ITRPV-2018 9th

edition ITRPV-2018 9th edition.

Figure 2. Road map for wafering thickness trend,

Multi diamond-wire sawing technology
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Figure 3. Diamond wire 100d-M6/12 (a), diamond wire 80d-M6/12 (b) and schematic of a
multi-diamond wire saw (c).
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Figure 4. Silicon block (a), thin as-sawn silicon wafers with a thickness of 120 pm (b) and its
high flexibility (c).

The impact of saw mark direction on the fracture strength of thin monocrystalline silicon wafers (120 pum)
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group in parallel bending to saw marks.? In parallel
bending, the strength was divided into two groups, the lower
strength group consisting of fresh-wire side wafers and the
higher strength group of worn-out side wafers.

by cracks

we. Saw marks

The impact of damage etching on fracture strength of diamond-wire sawn monocrystalline silicon wafers (200 pum)
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Figure 9. Fracture strength of bare, 3, 5,

and 10 pm etched wafers.? Figure 11. Sherman’s crack advance model.4).5)

Conclusion and future issue

> To employ a thinner diamond wire (80d-M6/12) allows to saw thinner wafers
(120 pm) with reduced silicon kerf (100 pm) per wafer.

> It needs to control the vibration of thin wafer and wires when sawing is in
progress, which strongly impacts on the processing yields.

> To study the impact of wire vibrations on the damage of thinner wafers and
their fracture strength.

> To supply thinner wafers for our cell processing group.

Figure 10. Fracture surfaces of bare wafers in parallel bending (a-1) and (a-2), and those in perpendicular
In parallel bending, the fracture surfaces are smooth or have a little
perturbations. On the contrary, in perpendicular bending, the surfaces have complex paths of crack-
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