近年に製造された結晶シリコン 太陽電池モジュールの年劣化率の算出

・・・・石井 徹之¹、崔 誠佑²、佐藤 梨都子²、千葉 恭男²、増田 淳² ¹電力中央研究所 材料科学研究所 電気材料領域 ²産業技術総合研究所 太陽光発電研究センター モジュール信頼性チーム

研究の目的

2016年11月末までに、太陽光発電システムが電力系統 に約37 GW導入されており、需給運用をする際に太陽光発 電システムの発電電力を高精度に把握・予測する必要が ある。太陽光発電システムの発電性能が経時変化すると 発電電力の把握・予測精度が下がるために、その発電性 能の経時変化を明らかにする必要がある。

太陽電池の市場でのシェアは結晶シリコン太陽電池が 90%以上を占めるが、近年、その中でも普及率の高いp型 結晶シリコン太陽電池や、高効率なヘテロ接合型太陽電 池やバックコンタクト型太陽電池などのn型結晶シリコン 太陽電池の技術開発が著しい。しかし、これらの最近の 結晶シリコン太陽電池の実運用状態での発電性能の経時 変化は明らかになっていない。

本研究では、2010年以降に製造された最近の結晶シリ コン太陽電池モジュールの発電性能の経時変化を屋外評 価と屋内評価により明らかにする。

実験方法

本研究では、佐賀県鳥栖市産総研九州センターにおいて 2013年~2016年の4年間に計測・測定された6型式の結晶 シリコン太陽電池の発電性能の経時変化を3手法: (a)発 電量、(b)パフォーマンス・レシオ、(c)標準試験条件に よる室内測定出力により算出する。

結果と考察

まとめ

表1 6型式の結晶シリコン太陽電池モジュールの年劣化率(%/年)						
1/2013~12/2016	E-1A	E-1B	E-2A	E-2B	W-2A	W-2B
	sc-Si(a)	sc-Si(b)	mc-Si(a)	mc-Si(b)	(SHJ)	(IBC)
(A) Energy Yield	0.0	-0.6	0.1	0.1	1.3	0.6
(B) Outdoor PR	0.1	-0.4	0.1	0.2	1.3	0.7
(C) Indoor P_{MAX}	0.0	-0.3	0.3	0.2	0.8	0.7

注1 E-1B (sc-Si(b))とE-2B (mc-Si(b))は初期に短時間で起こる光劣化の影響を除くために、 2014年1月の室内測定値から年劣化率を算出している。

- 1. 光劣化の影響を考慮しなければ、p型基板結晶シリ コン太陽電池の年劣化率は極めて小い。
- 2. 2型式のn型基板結晶シリコン太陽電池は、比較的 大きな年劣化率を示した。
- W-2A (SHJ)の主な劣化要因は V₀であり、a-Si:H層やTCO層、もしくはそれらの界面における欠陥等の 増加が劣化要因であると推察される。
- W-2B(IBC)は、高電位のモジュールが劣化し、低 電位のモジュールは劣化していない。n型基板結晶 シリコン太陽電池のPIDが原因である。

本研究は、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の「太陽光発電システムの高精度発電量評価技術の開発」により実施されました。関係各位に深く感謝申し上げます。