

Characterization of a 12.3% efficient Cu₂Zn(Sn_{1-x}Ge_x)Se₄ thin-film solar cell

Shinho Kim¹, Hitoshi Tampo¹, Hajime Shibata¹ and Shigeru Niki^{1, 2} National Institute of Advanced Industrial Science and Technology (AIST) ¹Research Center for Photovoltaics, ²Department of Energy and Environment

Results and Discussions

New efficiency of Ge incorporated kesterite solar cell

Device parameters

			•		•					
Cell	Eff. (%)	V _{oc} (V)	J _{sc} (mA∕cm²)	FF	<i>R</i> s (Ω·cm²)	R _{sh} (Ω·cm²)	A	J ₀ (A/cm²)	<i>E</i> (eV)	E_/q-V ₀₀
CZTSSe IBM (2013)	12.60	0.513	35.2	0.698	0.72	621	1.45	7.0E-8	1.13	0.617
CZTGSe AIST (2015)	10.03	0.543	29.5	0.627	0.20	694	2.49	6.3E-6	1.19	0.647
CZTGSe AIST (2016)	12.32	0.527	32.2	0.727	0.36	1111	1.47	3.6E-8	1.11	0.583
CZTSSe IBM (2013) CZTGSe AIST (2015) CZTGSe AIST (2016)	12.60 10.03 12.32	0.513 0.543 0.527	35.2 29.5 32.2	0.698 0.627 0.727	0.72 0.20 0.36	621 694 1111	1.45 2.49 1.47	7.0E-8 6.3E-6 3.6E-8	1.13 1.19 1.11	0.617 0.647 0.583

Improved V_{OC} and FF with Ge incorporation

- V_{OC} deficit (= 0.583 V)

- Highly improved fill factor over 0.7

Reduced V_{OC} loss in the Ge incorporated kesterite solar cells

Reduced band tailing in comparison with CZTSSe.

Life time measurement of CZTGSe

Summary

- We demonstrate new results of Ge incorporated kesterite thin-film solar cell.
 - High efficiency 12.3%Small *V*oc deficit (0.583 V)
 - reduced band tailing through control of the Ge/(Sn + Se) ratio
 - -Large improvement in FF (=0.727)
 - reduced carrier recombination at the absorber/buffer and/or SCR

References

 W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, Advanced Energy Materials, 4, 1301465 (2014).

- [2]. Q. Shu, J.-H. Yang, S. Chen, B. Huang, H. Xiang, X.-G. Gong and S.-H. Wei, Physical Review B, 87 115208 (2013).
 [3]. S. Kim, K. M. Kim, H. Tampo, H. Shibata, K. Matsubara and S. Niki, Solar Energy Materials and Solar Cells, 144
- 488 (2016). [4]. S. Kim, K. M. Kim, H. Tampo, H. Shibata and S. Niki, Applied Physics Express, **9** 102301 (2016).

