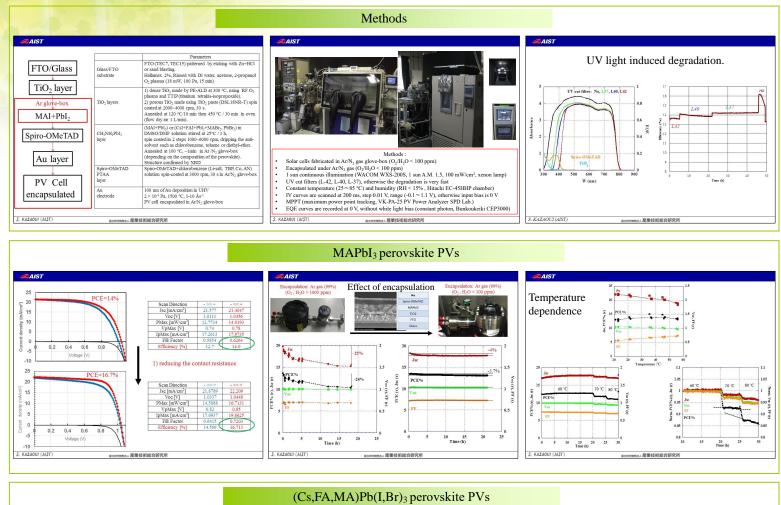
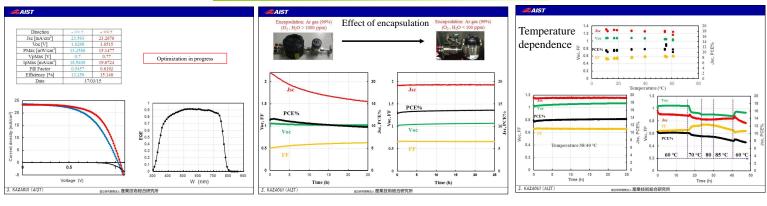
Research Center for Photovoltaics

High Stability and High Efficiency Perovskite Solar Cells


<u>S. Kazaoui^{*}, T. N. Murakami, N. Onozawa-Komatsuzaki, T. Funaki</u>


National Institute of Advanced Industrial Science and Technology, Research Center for Photovoltaics

Introduction

The demand for new materials in order to increase the efficiency and to reduce the cost has triggered our interest to study the "Organo-Lead Halide Perovskite" solar cells. We compare the efficiency and the stability of $MAPbI_3$ and $(Cs,FA,MA)Pb(I,Br)_3$ Perovskite solar cells fabricated by wet solution process. MA is methylammonium $(CH_3NH_3^+)$ and FA is formamidinium $(HN=CHNH_3^+)$ cations.

Goals

Conclusions / Perspectives

 Power conversion efficiency (PCE%) >15% was achieved with both MAPbl₃ and (Cs,FA,MA)Pb(I,Br)₃ PVs. To achieve high efficiency the optimization of the chemical composition of (Cs,FA,MA)Pb(I,Br)₃ PVs is in progress

2) High stability is achieved for PVs fabricated and encapsulated in low level of $O_2/H_2O < 100$ ppm (Ar glove box), but low stability for PVs fabricated in dry air (20% O_2 , 5% RH) or encapsulated in high level $O_2/H_2O > 1000$ ppm.

3) Both MAPbI₃ and (Cs,FA,MA)Pb(I,Br)₃ PVs show a relatively high thermal stability up to 60 °C, but poor thermal stability above 70/80 °C.

Experiments are in progress to elucidate the origin (perovskite, hole and electron transport layers) and the mechanisms leading to the degradation of PVs.

Acknowledgements:

This work is financially supported by AIST and NEDO (高性能・高信頼性太陽光発電の発電コスト低減技術 開発 革新的低製造コスト太陽電池の研究開発 (ペロブスカイト型太陽電池)

PE-ALD and SEM were performed at AIST Nano-Processing Facility (AIST-NPF)

Corresponding author: カザウィ Kazaoui e-mail: <u>s-kazaoui@aist.go.jp</u>