

1

高信頼性結晶シリコン太陽電池モジュール

- 標準モジュール構造(AI-BSFセル)での信頼性試験
 (1)PID試験
 - (2)冷熱衝撃試験
- 2. 高信頼性モジュール構造での信頼性試験
- 3. 高信頼性建材一体型モジュールの提案

産業技術総合研究所 再生可能エネルギー研究センター 太陽光チーム 白澤 勝彦、浅尾秀一、高遠秀尚

高信頼性結晶シリコン太陽電池モジュールの開発にあたって JISやIECの評価試験をベースに強制劣化により故障モードを確認する 標準モジュールを基準とする

1. 標準モジュール構造での信頼性試験

(1)PID試験

モジュール構造 ・REF:アルミ板/t3.2 mmガラス/EVA/セル/EVA/PET ・試験品:アルミ板/EVA/セル/EVA/PET 試験条件

-1000 V , 85°C , 85%RH

ガラス無しMoの分析結果

リーク箇所からEDX元素分析(下図)により Ca、Tiを検出

結晶状物が存在(SEM)

Ca(EDX)

国立研究開発法人産業技術総合研究所福島再生可能エネルギー研究所

(2)冷熱衝撃試験(-60°C~+100°C)

①銀電極上のタブ配線材剥離⇒半田にクラック発生 ②セル間ではタブ線の変形⇒断線へ

(1)試験条件

条件1	UV	\Rightarrow	тст	\Rightarrow	DML
条件 2	UV	\Rightarrow	DH	\Rightarrow	DML
条件3	PCT				
条件 4	UV	\Rightarrow	РСТ	\Rightarrow	тст
条件 5	UV	\Rightarrow	PID		

両面ガラスを基本構造とする

紫外線照射試験 (UV):5sun <i>,</i> 60℃
冷熱衝撃試験 (TCT) :-60℃~100℃
ダイナミックメカニカルロード試験 (DML) : ±4000 Pa, 1 min/cyc
高温高湿試験 (DH) :90℃, 95%RH
プレッシャークッカー試験 (PCT) : 110℃, 85%
Potential Induced Degradation 試験 (PID) :85℃, 85%RH, -1000 V

(2)モジュール構造

t0.85 化学強化ガラス
EVA
セル
EVA
t0.85 化学強化ガラス
両面ガラスモジュール構造

t3.2 強化ガラス	
EVA	
セル	
EVA	
バックシート	
比較用モジュール構造	

国立研究開発法人産業技術総合研究所福島再生可能エネルギー研究所

3. 高信頼性建材一体型モジュールの提案

高信頼性低コスト型屋根材一体型モジュール

All the all the all the all the all		ガラス(t0.85 mm ~ t3.2 mm)	
		高信頼性封止材	
		高効率セル]
		高信頼性封止材	
		(バックシート)	
		接着剤	
		屋根材	
4		モジュール構造	
	課題1. コスト ・フレームレス ・架台レス ・金具レス ・屋根材一体型モジュール作製プロセスの簡易化		
屋根材一体型Moイメージ図	課題2. ・接着剤 ・屋根材 ^対 ・出力取	屋根材としての信頼性、耐久性、安全性 の信頼性、耐久性、安全性 構造としての信頼性、耐久性、安全性 り出し	
	課題3. ・高効率 [·] ・裏面反	高出力 セル 射	

1. 標準モジュール構造での信頼性試験

(1)PID試験

①PIDにはNaとNa以外の材料が関与している可能性がある。 ②Na起因のPIDは逆電圧により回復するが、Na以外の元素によるPIDは回復しない可能性がある。 ③今回検出されたCa, Tiの起源も含めさらに検討を進める。

(2)冷熱衝撃試験

①銀電極上のタブ配線材剥離⇒半田にクラック発生
 ②セル間ではタブ線の変形⇒断線

2. 高信頼性モジュール構造での信頼性試験 両面ガラスモジュール構造での優位性について調べた

試験項目	優位性	備考
UV試験	- *	4 セルモジュールで良好な結果が得られたが、さらに検討が必要
TCT試験	0	
DH試験	_	長時間での評価が必要
PCT試験	0	
PID試験	- *	化学強化による効果であり両面ガラスでの効果はないと思われる
UV試験との組み合わせ試験を行ったが今回の試験ではUVが他の試験に及ぶす影響は見られなかった		
DML単独試験	0	セルクラックに対して有効
CFによる配線	0	銀電極とタブ配線の接続に導電性フィルム(CF)を用いた場合、セルクラックに対して有効である。

今後

- ①標準モジュール及び開発モジュールでの強制劣化での故障モード、故障メカニ ズムの調査を継続する。
- ②開発モジュールでは封止材、配線材およびPERC、PERT、BC等についても評価を行う。
- ③市場品での故障モード、故障メカニズムの調査を継続する

謝辞

本研究の一部は、新エネルギー・産業技術総合開発機構(NEDO)の委託のもとに実施されました。 関係各位に感謝申し上げます。