Research Center for Photovoltaics

大気下におけるCIGS太陽電池の効率劣化の解析

考察

結論

Atomic %	Cu	In	Ga	Se	0	Na	Cu/(In+Ga)
Initial state	8	15	10	39	18	9	0.33
NH ₃ etching	12	19	13	46	10	-	0.37
DH 15 hour	8	12	7	21	40	12	0.42
DH + NH ₃ etching	13	16	10	25	35	-	0.50
アルカリ系溶	液	⇒ ∧	la, (1	In, Gá	<i>)酸</i>	化物	を溶解5)
アルカリ系溶	液	⇒ ∧	la, (1	In, Gé)酸	化物	を溶解り
アルカリ系溶	液		<i>la, (1</i>	In, Gé	a)酸	化物 ィブī	<i>を溶解⁵⁾</i> 直後からず
アルカリ系溶	液		<i>la, (1</i> lark n ²)	In, Ga	<i>)酸</i> クラ・	<u>化物</u> イブi	<i>を溶解⁵⁾</i> 直後から並
アルカリ系溶	液		<i>la, (1</i> ^{lark} n ²)	In,Gá ス・ 列	<i>)酸</i> クラ・ 抵打	<i>化物</i> イブi i.は(<i>国を溶解⁵⁾</i> 直後から並 低下してい
アルカリ系溶 スクライブ直後 大気曝露 1時間	·液 ■ 副	R _{sh, a} (Ωcr 1000 500	<i>la, (1</i> ^{lark} n ²) 00	In,Gá ス・ 列	<i>)酸</i> クラ・ 抵打	化物 イブi には(<i>国を溶解</i> ジ 直後から並 低下してい
アルカリ系溶 スクライブ直後 大気曝露 1時間 大気曝露 90日	·液 □ 『 間	Λ	<i>la, (1</i> ^{lark} n ²) 00	In, Ga ス・ 列 アノ	の酸クラ・抵抗		<i>四を溶解⁵⁾</i> 直後から並 低下してい 属酸化物も5

参考文献

- 1. D. Lee, et al., Sol. Energy Mater. Sol. Cells 105 (2012) 15.
- 2. S. Yamaguchi, et al., Jpn. J. Appl. Phys. 54 (2015) 08KC13.
- 3. J. Nishinaga, et al., Jpn. J. Appl. Phys. (in press)
- E. R. Braithwaite, J. Haber, Molybdenum: An Outline of Its Chemistry and Uses (Elsevier, Amsterdam, 1994) Chap. 3.
- R. Hunger, *et al.*, Proc. 3rd World Conf. Photovoltaic Energy Conversion, 2003, p. 566.
- ・モリブデン酸化物が太陽電池端面を短絡させる

・大気曝露後、数か月にて並列抵抗が大きく減少

◆ 封止加工されていないCIGS太陽電池

→ 変換効率劣化のメカニズムと回復法

・アルカリ溶液によって酸化物を除去すると、変換効率が回復

・Damp Heat試験によって、数時間にて変換効率が大きく減少