

Cu₂ZnSn(S,Se)₄薄膜のCdS層製膜前 における表面処理の効果

太陽光発電研究センター 化合物薄膜チーム 西永慈郎

表面処理と太陽電池特性の解析

¹⁾D. Hironiwa, T. Minemoto, et al., Thin Solid Films 582 (2015) 151. ²⁾古田健人, 山田明, 第76回応物秋季学術講演会, 15a-2M-12.

- ◎ セレン化、硫化法
 - (ソーラーフロンティア社提供)
- CdSバッファ層製膜前の処理 (HCI, KCN, H₂SO₄, 大気下熱処理^{1,3)})

SEM, X線光電子分光法(XPS)
IV曲線、外部量子効率

¹⁾D. Hironiwa, et al., Thin Solid Films 582 (2015) 151. ³⁾I. Repins, et al., Sol. Energy Mater. Sol. Cells, 101(2012) 154.

atomic% XPS	Cu	Zn	Sn	Se	0	S	Na
表面処理前	27	13	15	40	5	-	-
HCI, KCN, 熱処理	21	15	16	34	14	-	-
HCI, KCN, 熱処理, NH。	27	15	15	38	Λ	_	_

CIGS太陽電池との比較

CZTS太陽電池の V_{oc}, FF が低い根本的原因とは?

CIGS太陽電池との比較

CIGS太陽電池との比較

キャリア回収率の定義

正バイアス下におけるキャリア回収率

PV

まとめ

- → CdSバッファ層製膜前の表面処理と太陽電池特性
 - ・大気下熱処理・NH₃処理により、表面の不完全性を除去
 - ・硫酸系エッチング、酸化膜形成・除去を行うことで、R_{sh}が上昇
- → 外部量子効率と分光光度シミュレーション
 - CdS/CZTSSe界面の再結合により、キャリア回収率は低下
 - ・高効率化に向け、吸収層および界面の品質向上が重要

謝辞:本研究は(独)新エネルギー・産業技術総合開発機構(NEDO)の支援により 実施されたものである。また、分光感度シミュレーションは岐阜大学藤原裕之教授 の指導により実施されたものである。関係各位に感謝致します。