

ワイドギャップCIGS太陽電池の 高効率化に向けた界面制御技術

太陽光発電研究センター 化合物薄膜チーム 石塚 尚吾

CuGaSe₂ (CGS)の研究意義

- 1. ワイドギャップ(~1.4 eV) CIGSの出発材料
- 2. タンデム型太陽電池のトップセル材料としての 可能性

$$\begin{array}{c}
\text{CuGaSe}_{2} \\
\text{E}_{g} \sim 1.7 \text{ eV}
\end{array}$$

$$\begin{array}{c}
\text{Top} \\
\text{Middle} \\
\text{Bottom}
\end{array}$$

 3. 水素エネルギー分野への展開(水分解による 水素生成用材料)

[1] M. A. Contreras, *et al.*, *Prog. Photovoltaics* **2012**, 20, 843.
[2] H.-W. Schock, *et al.*, *Proc. 16th EU-PVSEC* 2000, pp. 304.

0.2

Voltage (V)

CIGS太陽電池と比較してCGS太陽電池のFFは、、、

	η (%)	$V_{ m oc}$ (V)	J _{sc} (mA/cm²)	FF	Note	Ref.
	9.7	0.946	15.5	0.665	Single crystalline CGS (In-house measurement)	Univ. Konstanz [1]
	9.5	0.905	14.9	0.708	Record (2003 - 2013)	NREL [2]
	7.0	0.922	14.5	0.523	Modified CdS buffer	HMI [3]
	9.0	0.795	16.4	0.692	High-temperature growth	NREL [4]
	11.0*	0.901	17.1	0.713	Record (2013 - present)	AIST [5]
*Current certified record efficiency for CuGaSe ₂ solar cells						
	(a) (b) (c) (

CuGaSe₂ solar cell

Scan Mode Isc to Voc

. AIST

アニール効果の報告例

CIGSとCGSの大きな違い(三段階法製膜による)

・ソーダライムガラス→CdSまでを同一条件で作製 ・透明電極層(TCO)i-ZnO/ZnO:Alを異なる条件で製膜

MT-SpによるTCO製膜温度の影響比較

Temperature –V_{oc} measurements (CGS)

CGSのFF改善/こTCO低温製膜が有効

Summary

- ✓ CGS太陽電池はp-n接合形成後のデバイス作製工程(TCO 製膜条件)が性能に大きく影響(CIGSは比較的鈍感)
- ✓ CGS太陽電池のFF値向上にはTCOの低温製膜が有効
- ✓ 高Ga組成ワイドギャップCIGS太陽電池においても同様の効果が見込まれ、低温製膜TCOの高性能化は一つの課題
- ✓ もう一つの重要課題としてCGS光吸収層表面に形成される Cu欠乏層の制御が挙げられる

Acknowledgement

Technical support

M. lioka, H. Higuchi, A. Kurokawa, H. Takahashi, and T. Koida

