

光触媒ー電解ハイブリッドシステム のための高性能光触媒開発

太陽光発電研究センター 機能性材料チーム 三石 雄悟・佐山和弘

光触媒を利用した人工光合成技術

~非常にシンプルな手法で、様々な魅力的な化学反応を進行可能~

図 レドックス媒体(Fe³⁺イオン)を利用した光触媒反応

シンプルな手法でのエネルギー獲得・貯蔵が可能 ⇒電気分解と組み合わせることでの水素製造

光触媒一電解ハイブリッドシステム

設定物元磁媒の吸収スペンドルのよび 光触媒反応に対するアクションスペクトル

量子収率:32% at 450 nm

太陽光エネルギー変換効率:0.65%

昨年度: BiVO4の高性能化を目指した取り組み

調製法を改良(調製温度、添加物)

⇒全てシーライト構造のモノクリニック相であることを確認

様々な手法で調製したBiVO₄による Feイオン存在下での酸素生成反応

調製法	調製条件	酸素生成活性 /
尿素法	90°C for 8 h	77
マイクロ波一尿素法	92℃(安定時) for 1 h	67
液固相法	室温 for 48 h	79

触媒量: 0.5 g, 反応水溶液: 2 mM Fe(ClO₄)₃, 150 mL (pH 2.6) 光源: ソーラーシミュレーター (AM1.5), 照射面積: 9 cm²

様々な手法で調製したBiVO₄による Feイオン存在下での酸素生成反応

調製法	調製条件	酸素生成活性 /
尿素法	90°C for 8 h	77
マイクロ波一尿素法	92℃(安定時) for 1 h	67
液固相法	室温 for 48 h	79
	80°C for 4 h	138

触媒量: 0.5 g, 反応水溶液: 2 mM Fe(ClO₄)₃, 150 mL (pH 2.6) 光源: ソーラーシミュレーター (AM1.5), 照射面積: 9 cm²

既報の調製法で得られたBiVO₄はどれも同程度の性能 液固相法の際の調製温度を制御することで大幅な性能向上に成功

条件を最適化して調製したBiVO₄粉末に対する アニール処理前後の比較

Ga-BiVO₄(液固相法、80℃)

Ga−BiVO₄(液固相法、80℃) 500℃,30 min焼成処理

BiVO₄によるFeイオン存在下での酸素生成反応 に与えるアニール処理の効果

調製条件	Ga添加	酸素生成活性 / μ mol ⁻¹	
80°C for 20 h	0.5mol%	201	
80°C for 20 h, 500°C,30 min焼成	0.5mol%	108	
室温 for 48 h	None	79	
室温 for 48 h, 500℃30 min焼成	None	86	

触媒量: 0.5 g, 反応水溶液: 2 mM Fe(ClO₄)₃, 150 mL (pH 2.6) 光源: ソーラーシミュレーター (AM1.5), 照射面積: 9 cm²

Ga-BiVO₄の性能はアニール処理により劇的に低下

酸素欠損等の欠陥準位が性能向上に強く寄与している可能性

ソーラーシミュレーター(AM1.5、照射面積: 9 cm²)を用いた水の酸化反応

まとめ

BiVO₄光触媒の性能向上を目指し、調製法の改良を行った。

- 液固相法での調製の際の温度条件を最適化することで
 既報と比べ大幅に高性能なBiVO₄を調製できることが明らかとなりました。
- 調製時に様々な金属イオンの添加を試みたところ、 Gaを添加した場合にさらに高い性能が得られた。
- 性能向上要因について調べた結果、酸素欠損等の欠陥準位が 強く寄与していることを示唆する結果が得られた。

- · 今回観測された欠陥種の同定を試み、今後の高性能化の指針とする。
- ・ 調製法をさらに改良することで、1%、さらには3%の変換効率達成を目指す。