and Technology

PVモジュール信頼性評価：加速試験中評価手法の開発

棚橋 紀悟
 産業技術総合研究所 太陽光発電研究センター モジュール信頼性チーム Introduction \＆Procedures

Motivation \＆Background

Our Task：Thin Wafer PV Cells＋Ribbon with Opt．Properties \rightarrow Reliable／Durable Interconnected PV Modules

To Confirm the Reliability of Interconnection on these New Designed PV Modules，

Higher Stress than Conventional Thermal Cycling $-40^{\circ} \mathrm{C} / 85^{\circ} \mathrm{C} \quad \rightarrow \quad-60^{\circ} \mathrm{C} / 100^{\circ} \mathrm{C}$ Thermal Cycling \rightarrow Rapid Thermal Cycling 200 cycles $\rightarrow \quad 3,000$ cycles＋
－in situ Detection of Failures during Testing in situ AC Impedance Spectroscopy
\(\left.$$
\begin{array}{|c|c|c|}\hline \text { Thin Wafer PV Cells／Light Weight Glass } \rightarrow \text {＂FREA PV Module＂}\end{array}
$$ \left\lvert\, \begin{array}{c}Tested PV Mini－Module

Thin Wafer PV Cells

Mfg．in FREA Lab．

100 \mu \mathrm{~m} Thickness

\mathrm{n} －type c－Si／p－doped

Chemical Strengthen Glass

0.8 mm Thickness\end{array}\right.\right\}\)| Interconnection |
| :---: |
| Cu－Ribbon（1．3 mm） |
| by Soldering |

Summary

We previously reported that the＂spike－like＂elevation of whole impedance was observed，which was calculated by the measurement of I_{AC} and V_{AC} ，prior to the occurrence of interconnection failure during Rapid Thermal Cycling（RTC）test（JJAP 51：10NF13，2012）．In this study，the AC impedance parameters $(|Z|$ and $\theta)$ were continuously measured during this testing． Then，we obtained the results as follows；

The logarithmical impedance－elevation identified by $|\mathrm{Z}|$ elevation was observed at ca．3，000 cycles of RTC（Panel 1）． Interestingly，the increasing of $|Z|$ consistently accompanied with θ decreasing．
These level－changes of $|Z|$ and θ were observed in the temperature elevation phase，and also in the low temperature phase after the PV modules were sufficiently adapted at low temperature（Panel 5－8）．
When the PV module was completely adapted to any temperature just after these phenomena were happened，the level－ changes of AC parameters were not detected at all（Panel 9－10）．Simultaneously，any alterations of EL and IR images were not confirmed at room temperature（Panel 11）．
From the AC impedance spectroscopy（ $20 \mathrm{~Hz} \sim 50 \mathrm{kHz}$ ）during the $|\mathrm{Z}|$ elevating period（at $-60^{\circ} \mathrm{C}$ ），it is revealed that the levels of $|Z|$ and θ were $>10^{4} \Omega$ and almost -90° ，respectively（Panel 12－13）．
These results suggest that the soldering failure in PV modules（including the disconnection in junction box）can be observed when the RTC testing was conducted for prolonged cycles（ca． 3,000 cycles），and that this failure can be detected only during the RTC testing，as a complete detachment between electrical junctions，by the continuous in situ AC impedance measurement．

Panel 1

Panel 10

Panel 7

Panel 11

EL \＆IR Imaging at 2,911 cycles

Panel 12

Panel 13

