Development of n-type silicon bifacial solar cell

○シャラムジャンスマイ,木田康博,白澤勝彦,高遠秀尚 産業技術総合研究所 再生可能エネルギー研究センター 太陽光チーム

実験

I . N-type bifacial solar cell process

Wafer: 156×156 mm² n-type 180 µm thickness Cz-Si wafers, with a resistivity around 1.7 $\Omega \cdot$ cm. (Front) p-type emitter: Boron thermal diffusion.

(Rear) n-type emitter: Phosphorus thermal diffusion Saw damage removal and wafer cleaning Both sides alkaline texturization BBr3-diffusion and in-situ oxidation Rear side etching POCl₂ emitter diffusion HF cleaning SiO₂/SiN_x stack on both sides Screen printing on both sides co-firing/edge isolation

II. Boron diffusion

Four different sheet resistances have been investigated. $p^+ \mbox{emitter}$ sheet resistance was modulated by controlling the drive-in temperature.

Drive in process				oxidation	
Temperature	Time duration	O ₂ flux	N ₂ flux	O ₂ flux	N ₂ flux
Deposition process: After entering the furnace gas mixture heats up and BBr ₃ and					

oxygen are reacting according to the following chemical process $4BBr_3 + 3O_2 \rightarrow 2B_2O_3 + 6Br_2$

$$2B_2O_3 + 3Si \rightarrow 4B + 3SiO_2$$

Dri

 $Si + B \rightarrow SiB_x$ (boron rich layer)

III. Evaluation of passivation layer

IV. Solar cells

To investigate the perfect passivation, ${\rm SiO}_2/{\rm SiN}_x$ on the front side of the n-type Cz-Si was observed. $${\rm SiN}$$

We have investigated the bifacial solar cell with four different sheet resistances with SiO₂/SiN_x passivation layer. Rear side emitter sheet resistance and passivation layer are the same for all cells.

結論

In this study, we fabricated a bifacial solar cell on n-type Cz-Si wafers with different sheet resistance. By modulating the p^+ emitter sheet resistance, an efficiency of 0.4% enhancement was observed. The SiO₂/SiN_x passivation on the front side of n-type bifacial solar cell results in low implied V_{oc}. There is still a loss was observed on the short wavelength by spectral characterization even after modulating the p^+ emitter sheet resistance. It maybe relates to the passivation quality. A more detailed analysis of the front as well as the rear side passivation needs to be investigated.