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Engineering of the Ideal a-Si:H Layer 
in Heterojunction Solar Cells

Internal plasma properties of each species (radical and ion density, their
energies and trapping probability) can allow for precise control of
deposition material.

5nm hydrogenated amorphous silicon (a-Si:H) layers
were deposited in a parallel-plate PECVD system.
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• The structural profile for density in thin 5 nm and 10 nm a-Si:H(i) layers
containing no micro void fraction has demonstrated a basis for deposition of
high quality deposited layers. The optical and electronic properties are shown to
be dependent on the hydrogen content, and density, influenced by the
composition of radicals within the plasma

 28 
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p =  Pressure
s = Trapping probability
L = Length of the deposition chamber
R = Radius of the deposition chamber
T = Temperature of plasma radical

M = Mass of plasma radical
o = Geometrical diffusion length determined 
by    deposition chamber structure
D =  Diffusion length of Hydrogen
lo = Volume to surface area ratio of chamber

• In nano-fabrication, precise spatio-temporal control of radical density and
energy within the vicinity of the deposition surface represents a solution to
large area fabrication of ideal solar cells.
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In nano-scale fabrication, plasma deposition
process requires the precise control of species
in the plasma.
• Different PECVD systems (i.e. geometries,

power levels, RF, MW, ETPECVD….)
• Film properties are determined by plasma and

surface based parameters.
• Plasma properties are universal across

deposition systems.
• Inconsistent film properties make it difficult to

transfer research devices to industry.

The influence of deposition conditions from an optical
and structural stand-point for a-Si:H were investigated
for their role in the passivation of crystalline silicon
(c-Si) surfaces.

Surface reactions induced by plasma are by simulation. 

a-Si:H layer composition, electronic and optical
properties measured by FTIR, RAMAN, XRD,
multispectral ellipsometry, and QSSPC/PCD. Plasma dynamics during deposition in rf with DC bias.
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Plasma quality and ion/radical energies at deposition surface influence both
abstraction and chemisorption processes of SiH3 radicals, ultimately affecting
passivation quality.

Composition of the a-Si:H layer can be determined by the uptake of key
plasma-based radicals, influenced by temperature, rf-power, and partial
pressure.

XRD analysis identifies no crystallite
formation or transitioning states occur
with increased process temperatures up
to 280oC, when stable monohydride a-
Si:H was deposited by ML-PECVD
and standard PECVD.

The long term stability of the a-Si:H
layers during thermal annealing are
observed by their low surface
recombination velocities.

High stability is apparent for all a-
Si:H layers annealed at 250oC in
excess of 100 hours.

Long term stability and performance
can be guaranteed by careful analysis
of deposition conditions.

Optical profile for refractive
index and absorption
coefficient (633nm) of 5nm a-
Si:H(i) deposited between
100oC and 300oC.

Correlated with previous IR
spectroscopy measurements,
an upward trend is established
that demonstrates a clear
increase of refractive index
and absorption coefficient in
the absence of microvoids.

Importantly Eg exhibits a
distinct improvement with
increases in the anneal
temperature between 100oC
and 300oC, contrary to the
literature. The observed blue-
shift relates well to the
increase in density of the a-
Si:H(i) layer with higher
anneal temperatures.

Above 300oC, changes in Eg

are influenced by transition
states.

The proportional increase in the density of the thin film layers with
temperature was unexpected given that the density of a-Si:H had been thought
to decrease with temperature according to the literature; whereas, decreases in
density of a-Si:H layers (below 300oC) are more consistent with increased
microvoid concentration. Increases in density (up to 300oC) are consistent for
optimised amorphous material, prior to any phase transition.

結論 Importance for solar cells
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The shift in high-frequency hydride
stretching mode with increasing
temperature when correlated with
Seff indicates that drifting outside the
local optimization may lead to lower
quality a-Si:H layers
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Although ML-PECVD adds reliability to the a-Si:H deposition compared to standard
PECVD, further improvements to the efficiency and stability of a-Si:H/c-Si
heterostructures remains available.
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