多重積層Ge/Si_{1-x}C_x量子ドットの 作製と太陽電池応用

後藤和泰1・大島隆治2・菅谷武芳2・坂田功2・松原浩司2・近藤道雄^{1,3} 1東京工業大学 大学院総合理工学研究科 物質科学創造専攻 2産業技術総合研究所 太陽光発電研究センター 3産業技術総合研究所 福島再生可能エネルギー研究所

結果

□<u>Si_{1-x}C_x層上Ge量子ドットの作製</u> (a) Ge/Si QDs (b) Ge/Si_{1-x}C_xQDs (c) Ge/Si_{1-x}C_xQ

, QDs	(c) Ge/Si _{1-x} C _x QDs		(a)	(b)	(c)
	1. 36 M	堆積速度 [Å/s]	2.8	2.8	2.6
1122	Sel Saltant	高さ [nm]	1.8	2.5	1.5
200		サイズ [nm]	29.9	33.9	27.5
-	62.200	サイズ揺らぎ [%]	11.1	14.1	9.7
00000	400000	密度 [cm ⁻²]	5.7 ×	1.1 ×	1.2 ×
	A SHARE AN A SHARE AND A		10^{10}	1011	10 ¹¹

➢ Si₁、C、層上のGe堆積は、Ge量子ドットの不均一性が増大

▶ 2.6 Å/sの堆積速度により、高均一かつ高密度なGe量子ドットがSi_{1-x}C_x層上に得られた
 ⇒ C-Ge結合は生じにくく、Ge原子は主にSi上で結晶化しやすくなるため、
 Ge原子のマイグレーションが抑制^[5]

□<u>中間層膜厚依存性(20層積層Ge量子ドット構造)</u>

>Si中間層を用いたGe量子ドットは、y = 10 nmにおいて、局所歪みが蓄積することにより ドットサイズが増大し、ドット密度が減少した^[6]

≻Si_{1-x}C_x中間層を用いることにより, y = 10 nmを用いてもドットサイズの顕著な増大が抑制 ⇒ 歪み補償効果

□フォトルミネッセンス (PL);40 nm中間層を用いた10層積層Ge量子ドット

- > Ge/Si_{1.x}C_x量子ドットにおいて、Si緩衝層を導入 することによりPL強度が約2.5倍に増大し、半値 幅が198.2 meVから96.7 meVへ減少 ⇒へテロ界面品質と量子ドット構造の改善
- → C) Cが面部員と重了やり構造の改善 · Ge/Si_{1-x}C_x量子ドットのPLピークエネルギー (0.828 eV)は、Ge/Si量子ドット(0.818 eV)に出
- (0.828 eV)は、Ge/Si量子ドット(0.818 eV)に比
 べて高エネルギー化
 ⇒局所歪み場の増大もしくは量子サイズ効果
- ⇒局所金み場の増大もしくは量子サイス効果 ▶ PLピークエネルギーは、Cの混入により1.08 eV
- から1.03 eVへ長波長化 ⇒C原子の混入で生じる引っ張り歪みによる △バレーの減少^[7]

Si緩衡層の導入による量子ドット形成前の表面粗さの改善、CとGe 原子の相互作用を抑制することにより、Ge量子ドット構造と光学特性 が改善することを見出した

結論

- ・ SS-MBE法を用いてSi基板上に積層Ge/Si_{1-x}C_x自己形成量子ドットを作製した.
- ・ 堆積速度2.6Å/sを用いることにより、Si_{1-x}C_x層上に高均一かつ高密度なGe量子ドットが得られた。
- Si_{1-x}C_x中間層を用いた積層量子ドット構造において、Si緩衝層を導入することにより、積層方向に均一なGe量子ドットが得られた.
- Si緩衝層を導入することにより、Ge/Si_{1-x}C_x量子ドットの光学特性が顕著に改善した.

参考文献

- [1] A. Luque et al., Phys. Rev. Lett. 78 (1997) 5014.
- [2] K. Yoshida et al., J. Appl. Phys. 112 (2012) 084510.
- [3] D. Alonso-Álvarez et al., Adv. Mater. 23 (2011) 5256.
- [4] K. Gotoh et al., J. Cryst. Growth 378 (2013) 439.
- [5] O. Leifeld et al., Mater. Sci. Eng. B 74 (2000) 222.
- [5] O. Leffeld *et al.*, Mater. Sci. Eng. B 74 (2000) 222.
 [6] Vinh Le Thanh *et al.*, Phys. Rev. B 60 (1999) 5851.
- [7] K. Brunner *et al.*, Phys. Rev. Lett. **76** (1996) 303.