

高光安定薄膜シリコン 太陽電池の開発

太陽光発電研究センター 先進プロセスチーム 松井 卓矢

研究背景

アモルファスシリコンの製膜

光劣化を抑制する製膜プロセスの開発

a-Si:Hセル デバイス構造と最適化

a-Si:Hセル特性とサブギャップ吸収スペクトル(FTPS)

a-Si:Hセル 高精度評価結果

Organization	Remark	LS condition	confirmed by	J _{sc} (mA/cm²)	V _{oc} (mV)	FF	efficiency (%)
TEL Solar* (formerly Oerlikon Solar)	stabilized t _i ∼250 nm 1.05 cm²	1sun, 50ºC 1000h	NREL	17.28	876	0.665	10.09
AIST/PVTEC	stabilized <mark>t</mark> i <mark>∼220 nm</mark> 1.0 cm²	1sun, 50°C 1000h	AIST	16.36	896	0.698	10.22
AIST/PVTEC	stabilized <mark>t_i∼310 nm</mark> 1.0 cm²	1sun, 50ºC 1000h	AIST	16.86	882	0.678	10.08

*Benagli et al., 24th EU-PVSEC 21 (2009).

- 遮光マスクをつけて高精度評価(AIST太陽光発電研究センター評価・標準チーム測定)
- 前記録の10.09%*を上回る安定化効率
- | 低い劣化率を厚膜でも維持 (Δη/η=10-11% @ *t*i=220-310 nm)

a-Si:H/µc-Si:H タンデムセル

a-Si:H/µc-Si:H タンデムセル

state	measurement	J _{sc} (mA/cm²)	V _{oc} (mV)	FF	efficiency (%)
initial	in-house	13.1	1.302	0.766	13.1
stabilized	in-house	12.9	1.330	0.744	12.7
stabilized	AIST	13.45	1.342	0.702	12.69

Date : 2 Oct 2014 Data No : T140724-25-1-4tdm-1 Sample No : T140724-25-1-4tdm Repeat Times : 5

Isc	13.45	mA	
Voc	1.342	2 V	
Pmax	12.69	mW	
Ipmax	11.70	mA	
Vpmax	1.085	5 V	
F.F.	70.2	8	
Eff(da)	12.69	8	
DTemp.	25.0	°C	
MTemp.	24.9	°C	
DIrr.	100.0	mW/cm ²	
MIrr.	100.2	mW/cm2	(top)
MIrr.	100.1	mW/cm2	(bottom)

Scan Mode Isc to Voc トライオード法によるトップセ ルi層製膜(*t*i=350 nm)

1-sun, 1000 hours, 50°C, open-circuit

■ Δη/η~3%

■前記録の12.62%*を上回る 安定化効率

*Boccard et al., IEEE J. Photovoltaics 4 1368 (2014).

a-Si:H光安定性の製膜速度依存性の調査

- 1. トライオード法で高い特性が得られるのは、 低い製膜速度に起因しているのか?
- 2. 製膜速度を極限的に下げれば、光劣化はさら に低減できるか?

- ダイオードおよびトライオードプラズマCVD法 を用いて広範囲に製膜速度を制御し、太陽 電池の初期特性と光劣化特性を評価する。
- 異なる製膜速度で作製した太陽電池の局在 準位を評価して、太陽電池特性を決める要 因を調査する。

a-Si:Hセル i層製膜速度依存性

- トライオード領域で最も高い安定化効率が得られるが、非常に低い製膜速度で作製した セル(R_d=2x10⁻³ nm/s)においても劣化後特性は改善されない(FF~<0.7)。</p>
- 低レート化に伴ってV_{oc}が著しく低下 ⇔ 狭バンドギャップ化に関係。
 - より高い製膜速度領域でトライオード法の効果を検証する必要がある。

まとめ

- トライオード型プラズマCVD法を用いて光吸収層を製膜したa-Si:H太陽 電池は、光誘起欠陥の生成が少ないことに起因して光照射後に優れた 発電特性を示す。
- その結果、これまでの報告の中で最も高い安定化効率を単接合(10.2%)並びにタンデム構造(12.7%)のデバイスで実証した。(高精度 評価結果)
- | 製膜速度を極限的に低くしても、一定の光劣化が残存する。
 - ー般的な製膜速度領域で、トライオード法の優位性を検証することが課 題。

謝辞

本研究はNEDO「太陽エネルギー技術研究開発 太陽光発電 システム次世代高性能技術の開発 次世代多接合薄膜シリコ ン太陽電池の産学官協力体制による研究開発」の中で太陽 光発電技術研究組合(PVTEC)と共同で実施された。関係各 位に感謝致します。

New Energy and Industrial Technology Development Organization