

FREAにおける 結晶シリコン太陽電池の開発

再生可能エネルギー研究センター 太陽光チーム 白澤 勝彦

バイフィシャル(PERT)セル(ポスター:シャラムジャンスマイ)

酸化膜有無によるVocへの影響

焼成前後のライフタイム

SiNx/	μs	
n型単結晶Si	焼成前ライフタイム	31
	焼成後(750℃)ライフタイム	223
p型単結晶 Si	焼成前ライフタイム	13
	焼成後(750℃)ライフタイム	57

セル特性	Jsc (mA/cm ²)	Voc (V)	\mathbf{FF}	ŋ (%)
表側	38.8	0.633	0.781	19.2
裏側	32.6	0.628	0.786	16.1

更なる特性改善のために

界面再結合速度を低くするためには界面 欠陥密度を小さくするとともに固定電荷に より電界効果パッシベーションが必要

図5 界面再結合速度と界面欠陥密度,界面固定電荷密度の関係.

S. Miyajima, J. Plasma Fusion Res. Vol. 85, No. 12 (2009) 820.

国立研究開発法人產業技術総合研究所

<u>PERCセル</u>

ラインアルミ印刷電極 ・レーザーパターニング幅 50 μm ・ラインアルミ電極幅 80 μm

ラインアルミ電極PERCセル構造

国立研究開発法人產業技術総合研究所

全面アルミ形成によりVoc、Iscが大きく低下 焼成温度が高くなるとVoc、Iscが低下傾向

⇒ ライフタイム、C-V評価

 $P^{D}C_{2-2}\Omega$ ・cm 50 × 50 mm² 180 µm Al_2O_3 評価プロセス 1. ALDによるAl_2O₃成膜⇒測定(PV-2000Aで測定) 2. ALD-Al_2O_3⇒450℃熱処理⇒測定 3. ALD-Al_2O_3⇒815℃熱処理(焼成想定)⇒測定 Al_2O_3 4. AlD-Al_2O_3⇒両面Al印刷焼成(815℃)⇒塩酸除去⇒測定

評価構造

	ALD 後	アニール後 450℃	焼成後 815℃	アルミ印刷+焼成後
τ(µs)	84	257	228	8
V _{fb} (V)	-0.139	2.913	測定不可(リーク?)	測定不可
$D_{it}(cm^{-2}eV^{-1})$	9.47E+10	7.49E+10	測定不可(リーク?)	測定不可

熱処理温度が高くなるとパッシベーション膜にリークが発生しVoc、Isc低下の可能性 アルミのパッシベーション膜への拡散によりVoc、Isc低下の可能性

国立研究開発法人產業技術総合研究所

イオン注入による接合特性評価(ポスター:棚橋克人)

SCM観察:実験方法

- *p*-type Si基板 │ ボロンドープ、156×156 mm²
 - テクスチャー形成
- 接合形成
 リンイオン注入
 25 keV, 4E+15 /cm², チルト7°
 アニール 850℃、15分
- パッシベーション
- 反射防止膜
- SCM観察

走査型静電容量顕微鏡法 (Scanning Capacitance Microscopy)

高周波電圧Vacを印加すると、探針直下のキャリア濃度 に依存する合成容量Cが変動する。探針を走査させなが らCの変動により生じる高周波共振器の偏重信号を測定 することにより、キャリア分布を可視化する。

イオン注入セルの二次元キャリア分布

 テクスチャー構造へのイオン注入において凹凸部と側壁部で注入深さに違いが 生じるが、ダメージ回復のアニール後は、深さ方向にほぼ均一な接合深さをもつ 拡散層が形成されていることが分かった。