

高効率薄膜微結晶シリコン太陽電池の開発

High-efficiency thin-film microcrystalline silicon solar cells

SAI Hitoshi

薄膜Si太陽電池の課題 – 高効率化

独立行政法人產業技術総合研究所

テクスチャ開発における課題

<u>ハニカムテクスチャによる系統的検討</u>

独立行政法人產業技術総合研究所

ハニカムテクスチャによる系統的検討

独立行政法人 **產業技術総合研究所**

更なる高効率化に向けて

aa: active area da: designated area

	Area cm²	t μm	V _{oc} V	J _{SC} mA/cm²	FF	Eff. %	Remarks
EPFL	da 1.04	1.8	0.549	26.55	0.733	10.69	Superstrate [1]
	aa 1.0	2	0.51	24	0.72	~9	Commercial substrate
	da 1.05	1.8	0.521	28.17	0.716	10.5	HC(P=2.5μm), IOH [2]
	da 1.05	1.8	0.523	28.22	0.732	10.81	HC(P=2.5μm), ITO, <mark>AR, (i)μc-Si</mark> [3]
	Δ		+0.4%	+0.2%	+2.2%		
	da 1.05	1.7	0.542	27.44	0.738	10.97	HC(P=2μm), <mark>i-p buff., thin (i)μc-Si</mark>
	Δ		+3.6%	-2.8%	+0.8%		

<V_{oc}, FF>

- (i)µc-Si:Hの結晶化率調整
- i-p buffer層
- 薄型化
- [1] Hänni et al., PIP <u>21</u> (2013) 821.
 [2] Sai et al., APEX <u>6</u> (2013) 104101.
 [3] PIP <u>22</u> (2014) 1. efficiency tables (ver.43)

<J_{sc}> ● 反射防止フィルム

0.5

0.4

0.3

0.2

0.1

0.0

300

5

4

3

2

1

Λ

air

1.0

Refractive index, n

Reflection loss (mA/cm²)

400

Reflectivity, R

Moth-eye film

①-1 反射防止フィルムによる屈折率変調

n = 2 500 nm $\lambda >> L_2$ 1.8 1.6 Refractive Wilson, Opt. Acta 29 (1982) 993 1.4 index 1.2 ,1.0 Loss 1 n 900 800 1000 1100 1200 500 600 700 Wavelength (nm) n A = 1 - RITO ~ 2 ~ 3.5 c-Si $A = 1 - R^{2}$ 新たな反射ロス無しで入射媒質の屈折率を変調 1.2 1.6 1.4 1.8 2.0

_{独立行政法人} 產業技術総合研究所

①-2 反射防止フィルムの適用

□ 反射防止(AR)効果の広帯域化
 □ EQE/光吸収のピークも向上

Ag電極のシャドウロス低減効果 ⇒全波長で吸収向上

ハニカムテクスチャとの相乗効果

● (i)µc-Si:Hの結晶体積分率は
 製膜条件で制御可

② (i)µc-Si:H結晶化率

- J_{SC}とV_{OC}(FF)のバランス調整 (∆J_{SC}⇔ ∆V_{OC})
- 高V_{oc}型に調整

③ i-pバッファ層

N

太陽光発電工学研究センター

④ i層薄型化

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ID	Area cm²	Ρ μm	H/P	t μm	V _{OC} V	J _{SC} mA/cm²	FF	Eff. %	
$ \begin{array}{c} 1551 \\ 1551 \\ 0a 1.1 \\ 1551 \\ 0a 1.1 \\ 2.0 \\ 0.25 \\ 1.7 \\ 0.542 \\ 27.4 \\ 0.738 \\ 11.0 \\ 0.542 \\ 27.4 \\ 0.738 \\ 11.0 \\ 0.738 \\ 11.0 \\ 0.738 \\ 11.0 \\ 0.738 \\ 11.0 \\ 0.738 \\ 11.0 \\ 0.738 \\ 11.0 \\ 0.738 \\ 11.0 \\ 0.738 \\ 11.0 \\ 0.738 \\ 11.0 \\ 0.738 \\ 11.0 \\ 0.738 \\ 1.7 \\ 0.542 \\ 1.045 \\ cm^2 (designated area) \\ WS \\ W$	1532	aa 1.1	2.0	0.25	1.9	0.540	28.2	0.739	11.2	
$(\underbrace{\textbf{u}}_{\textbf{p}}, \underbrace{\textbf{u}}_{\textbf{p}}, \underbrace{\textbf{u}}_{\textbf{q}}, \underbrace{\textbf{u}}, \underbrace{\textbf{u}}_{\textbf{q}}, \underbrace{\textbf{u}}_{\textbf{q}}, \underbrace{\textbf{u}}, \underbrace{\textbf{u}}_{\textbf{q}}, \underbrace{\textbf{u}}, \textbf{$	1551	aa 1.1	2.0	0.25	17	0.542	27.7	0.737	11.1	
$(\mathbf{u}, \mathbf{v}) = (\mathbf{u}, \mathbf{v}) = (u$		da 1.1	2.0	0.25	1.7	0.542	27.4	0.738	11.0	w/ AR
$\frac{1}{2} = \begin{pmatrix} C \\ 3 \\ 4 \\ 4 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$	Letiod (jum) Beriod (jum) Period (jum) Perio	2 3 2 3	$V_{oc} = \begin{bmatrix} 4 & 1 \\ (b) \\ P \\ \hline \\ P \\ \hline \\ \hline \\ FF \\ 4 \\ 1 \\ \hline \\ 1 \\ 1$	$\begin{array}{c} 2 & 3 \\ $	$\begin{array}{c} 4 \\ 4 \\ 3 \\ 2 \\ 2 \\ 0.9 \\ 0.8 \\ 3 \\ 3 \\ 2 \\ 1 \\ 4 \\ 0.8 \\ 0.8 \\ 0.7 \\ 1 \\ 4 \\ 0.6 \\ 0.6 \\ \end{array}$	E	I-V 30 25 20 15 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0	R最高久 IC-Si:H単		<pre>e: 31 Jan 2014 a No: C1551-R3-1 ble No: C1551-R3 bat Times: 9</pre>

独立行政法人產業技術総合研究所

まとめ

サブストレート型(nip) µc-Si:Hセル

- i-p界面へのバッファ層挿入 ⇒ 高V_{oc}化・高FF化
- モスアイフィルムによる反射損失低減可能 ⇒ J_{sc}(da) > 30.4 mA/cm²

(i) µc-Si:H /ITO膜界面の反射防止効果の広帯域化

(ii) Ag電極で反射した光の閉じ込め(シャドウロス低減効果)

- µc-Si:H層結晶化率·膜厚調整
- 世界最高となる<u>発電効率11%</u>を実現
- □ タンデム型・スーパーストレート型太陽電池への展開

RCPVTの皆様 (評価・標準チーム 菱川様、 志村様、佐々木様) PVTECの皆様 AIST-NPPの関係者

New Energy and Industrial Technology Development Organization

