

結晶Si系太陽電池の逆バイアス試験

金永模・土井卓也 産業技術総合研究所 太陽光発電工学研究センター

研究の目的

- ★ 太陽電池モジュールの寿命は20~30年と言われているが、短期間の試験で太陽電池モジュールの長期信頼性及び寿命を評価する技術が確立されていない。
- ◆ 逆バイアス状況は屋外モジュールでも発生する現象として太陽電池モジュールの評価方法への 応用可能性がある。

研究目的

本研究の目的は逆バイアス試験を結晶Si系太陽電池モジュールの信頼性及び寿命を評価する新規 加速試験方法として確立することであり、本段階の研究では、逆バイアス試験を最終的にフルサイズモ ジュールへ適用できるかを確認するために、4セルモジュールにて、劣化モードの確認、加速試験条件 の上限としての閾値などを調べる。

初期ステップ	\geq	途中ステップ	\rangle	ゴール
単セルモジュールの 逆バイアス試験 劣化因子及び 劣化モードの調査		ミニモジュールの 逆バイアス試験 フルサイズへの拡張可 能性の検討		逆バイアス試験を フルサイズ モジュールへ拡張

実験概要

コンセプト 熱ストレスは熱膨張係数の異なる部材の間、例えばセルとインターコネクタの接合部へ機械的な歪 みを与え、電極材料を劣化させると考えられる。太陽電池モジュールはセルの不整合や影のかかり 具合によって逆バイアス状態が発生し、発熱する。そこで、逆バイアス状況を利用した試験で電極材 料の劣化を加速できるか?

4セルモジュール

結果及び考察

Z

破壊サンプル
 未確接サンプル

С

Aタイプ試験(負荷レベル110W以上)

Bタイプ試験(110W>負荷レベル>100W)

単セルモジュール 試験現象、劣化特性によってすべての逆バイアス試験を3タイプの試験に分類

(A) 逆 パ 正 売 動作点移動 大 表後の 5時の

・ 数分~数十時間試験でサンプルが破壊

・ Rsの増加、Rshの減少による発電特性の劣化

結論

- **単セルモジュール(**B社製156mm角多結晶セル)
- ●IV特性の劣化はRsの増加、Rshの減少に起因する。
- ●Rsの劣化は負荷レベル>100Wの試験で顕著に現れ、値は試験時間に対して直線的に増加する。
- ●Rshの減少は負荷に依存し、負荷レベル>100Wの試験で顕著に現れる。
- ●破壊現象が起こる閾値は負荷レベル100~110Wである。
- 4セルモジュール(B社製156mm角多結晶セル)
- ●IV特性の劣化は単セルモジュールと異なり、主にRshの減少に起因する。
- ●各セルのRshの劣化傾向は異なる。セル間隔5mm以下では常にClセルで破壊現象が発生した。セル 間隔を10mm以上とした場合、破壊現象は起こらず、Clセルにて顕著なRshの減少が認められた。

今後の課題

▶ 4セルモジュール各セル劣化特性の間隔依存性の原因を解明する。

破壊の発生 ELイメージの異常発生 試験時間(h) セル間隔 d(mm) (セル番号) (セル番号) あり(C1) あり(C1) あり(C1) あり(C1) あり(C1) 10 362 20 なし 210 なし Oh 0h0h2h 7h 362h 210h d = 2mmd = 10 mmd = 20 mm5mm 各セルの劣化特性 各セルのRs、Rshの時間変化解析 Rshの時間変化 Rsの時間変化 C4ŧ 1.0 0.8 0.6 0.4 -4--2mm -4--5mm -#--10mm ---20mm

◆ 4セルモジュールの試験において劣化はRshの減少に起因し、C1セルにて顕著。
 ◆ C1のRshの劣化にはセル間隔が関係する。

謝辞

本研究は、新エネルギー・産業技術総合開発機構からの委託研究「太陽光発電システム次世代高性能技術の開発」 の一環として実施した成果の一部である。関係各位に感謝の意を表する。

参考文献

- (1) 土井ほか:「結晶系Si太陽電池セルへの順・逆方向電圧印加と発熱・破壊試験」、太陽/風力エネルギー講演論文集 2007 (2007), 445-448.
- Y. Jin, K. Ikeda and T. Doi, "Reverse bias test of c-Si single-cell PV modules", Proc. SPIE 8112, 81120Y (2011).
 金ほか:「結晶Si系単セルモジュール及びミニモジュールの逆バイアス試験」、太陽/風力エネルギー講演 論文集2011 (2011), 263-266.
- 4) 金ほか:「逆パイアスサイクリック試験による結晶Si系太陽電池単セルモジュールの劣化評価」、太陽/風力 エネルギー講演論文集2010 (2010), 547-550.
- (5)高久ほか:「太陽電池端子からの構成セル評価方法の提案と検証」、平成14年度日本太陽/風力エネルギー学会講演 論文集(2002), 19-22.