

Semiconducting Carbon Nanotubes applied to OPVs

## KAZAOUI Said (カザウィ・サイ)

Research Center for Photovoltaic Technology, National Institute of Advance Industrial Science and Technology (AIST)

## Introduction

The demand for new materials, to improve the power conversion efficiency of organic photovoltaic cells (OPVs), has triggered our interest to study semiconducting single wall carbon nanotubes (s-SWNTs).

The reasons are: •s-SWNTs harvest sunlight in broad spectral range (typically 300~2000nm) [1], •s-SWNTs exhibit relatively high carrier mobility (typically 1~10cm<sup>2</sup>/V.s), which have never been achieved with organic molecules and polymers.

## Experimental

To carry out our study,

•First, we have developed a technique to selectively extracted s-SWNTs from raw carbon nanotubes (HiPco) dispersed in toluene solution using polyfluorene (PFO) as dispersant and extracting agent assisted by sonication and centrifugation techniques [2].

•Then, we have combined s-SWNTs with various materials (Fullerenes, Si nano-crystal [3], small organic molecules and polymers) to make bulk-heterojunction and layer-heterojunction OPVs.

•Finally, we have characterized these OPVs by recording the I-V curves (at A.M. 1.5 100mW/cm<sup>2</sup>) and the EQE spectra.

