

機能性薄膜を用いた結晶シリコン太陽電池 PID対策モジュール

太陽電池モジュール信頼性評価連携研究体 原 浩二郎

研究の背景・目的

高効率・低コスト・高信頼性 太陽電池モジュール(システム)の実現

Si系太陽電池モジュール・システムの一つの劣化現象 として報告されているPID現象を理解し、メカニズムを 解明するとともに、低コストの対策モジュールを開発する

PID (Potential-Induced Degradation)

メガソーラーにおける太陽電池モジュール出力の大幅低下が顕在化

主な関連要因

- ・メガソーラー(高電圧)
- ・トランスレスインバーター
- ·水(湿度)
- ・高温
- •反射防止(AR)膜
- •EVA(封止材)
- ・ソーダライムガラス

想定されている劣化メカニズム例

これまでのPID対策例

- 1. Siセルの表面改質
 - SunPower (2005), SOLON (2010), Q-cells (2010)
 - → AR膜等、セル表面の改質による電荷の拡散
- 2. Siセル以外の部材
 - Hacke et al. (EU-PVSEC, 2010)、Koch (PVMRW2012)
 → 無アルカリガラス、アイオノマー等の非EVA封止材
 - ·大日本印刷(2012/8)
 - → ポリオレフィン系封止材
 - ・三井・デュポンポリケミカル(2012/12)
 - → アイオノマー系封止材

国内PVメーカーは、ほぼ対策済み?

PID現象を把握・理解して、対策モジュールを実現する

1. PIDの再現試験・諸条件の影響(結晶Si系)

温度依存性、電圧依存性、経時変化、セル種の影響、逆電圧の影響、モジュールサイズ、 ガラス種の影響、反射防止膜の条件 等

2. 結晶Si太陽電池・対策モジュール ポリマー薄膜の導入、TiO₂系薄膜の導入

3. 薄膜系太陽電池とPID現象

PID試験方法・アルミ法

-1000 V, 85℃, 2-24 h (湿度の制御なし)

独立行政法人 **產業技術総合研究所**

PID試験・I-V特性の経時変化

0h (16.4%)

0.5h (15.9%)

PID試験条件: -1000 V, 85℃

Time / h	lsc / A	Voc / V	FF	Pm / W	Eff. (%)
	130 / A	V00/V	••		(///
0	8.66	0.61	0.75	3.98	16.4
0.5	8.69	0.60	0.74	3.87	15.9
1.5	8.36	0.58	0.40	1.93	7.9
2.5	7.69	0.30	0.26	0.60	2.5
4.5	6.58	0.12	0.25	0.20	0.8
19	4.54	0.03	0.24	0.04	0.1

EL画像の変化

1.5h (7.9%)

独立行政法人產業技術総合研究所

PID試験 電圧依存性

逆電圧の効果と劣化モジュールの回復

+1000 V, 85°C, 2 h

劣化モジュールの逆電圧試験 (+1000V, 85℃, 7days)

逆電圧ではPID劣化なし

逆電圧により出力の一部が回復

機能性ポリマー薄膜(タマポリ製)

M: Na⁺, K⁺, Mg²⁺, Zn²⁺

•低透湿性 0.6 g/m² day (EVA: 15) •耐PID特性(Koch, PVMRW2012他) ・EVAよりも高価・高剛性・高硬度

アイオノマー薄膜の導入

タマポリ製ポリマー薄膜

PID試験条件: -1000 V, 85℃, 2 h

HM-52 (30 µm): タマポリ製

HM-52薄膜一枚の導入でPID劣化せず

PID試験・アイオノマー導入モジュール

PID試験条件: –1000 V, 85℃, 2 h

HM-52 (30 µm): タマポリ製

セル下面側導入でも劣化が抑制 → セル裏面への影響もPID劣化に関係か?

PID試験・ポリマー薄膜導入モジュール

PID試験条件:--1000 V, 85℃, 2 h

アイオノマーのカチオン種に依存せず、ポリエチレン薄膜でもPIDを抑制

ポリマーの体積抵抗率とリーク電流値

ポリマー	体積抵抗率 / Ω cm	リーク電流 / μA
EVA	2.5 x 10 ^{14 a}	5.9–6.3
アイオノマー	8.8 x 10 ^{16 b}	0.3–0.9
ポリエチレン	10 ¹⁷ c	<0.2

a サンビック・技術資料

b「太陽電池に用いられるフィルム、樹脂の高機能化とその応用」、技術情報協会、P274 c「太陽光発電システム構成材料」、工業調査会、P69

リーク電流値は体積抵抗率に反比例

高体積抵抗率の薄膜導入によりPID抑制が可能

TiO₂系薄膜によるPID抑制

–1000 V, 85°C, 2 h

TiO₂/glass 50-200 nm, 200°C

TiO₂系薄膜でもPIDの抑制が可能

PAIST

まとめ

・PID試験によりc-Si太陽電池モジュールの出力が低下 → 高温とマイナス高電圧が重要

- ・ガラス基板から拡散するNaイオン等が主原因の可能性 が高い(メカニズムの解明には詳細な検討が必要)
- ・ポリマー薄膜や酸化物薄膜の導入でもPID対策が可能
 (→ 低コストのPID対策技術の可能性)

既に国内PVメーカーは、ほぼ対策済み?

