

交互分子積層型低分子有機薄膜 太陽電池の研究開発

産総研・太陽光・有機新材料 JST-さきがけ 當摩 哲也

AIST

結果と考察

Table. Solar cell parameters of this work.

	Area (cm²)	Voc (V)	Jsc (mA/cm²)	FF	PCE (%)
Ref 1 ³⁾	0.033	0.9 2	6.30	0.6 2	3.6
(a) Simple p-n heterojunction OPV cell	0.04	0.8 9	4.18	0.6 6	2.5
(b) 1:1 BHJ OPV cell	0.04	0.6 7	2.77	0.2 7	0.5
(c) OPV cell by alternative deposition method	0.04	0.8 7	4.39	0.3 6	1.4

a) ITO/40nm DBP/50nm C60/6nm BCP/AI

- b) ITO/100nm 1:1 DBP:C60/6nm BCP/AI
- c) ITO/10nm DBP/[4nm DBP/5nm C60]¹⁰/10nm C60/6nm BCP

DBPは共蒸着によるバルクヘテロ構造を導入 しても、電流値向上は見られない。交互積層の セルで最も大きな電流を得た。

交互積層構造が形成され、p-n接合界面面積の増大とキャリアネットワークの 形成が観察される。

謝辞

本研究の一部は、科学技術振興機構(JST)戦略的創造推進事業 さきがけの支援をうけ実施した。