

Fabrication of CIGS films by using MBE for tandem solar cells

Sungwoo Choi, Hitoshi Tampo, Shigenori Furue, Hironori Komaki, Akimasa Yamada, Shogo Ishizuka, Shibata Hajime, Koji Matsubara, Shigeru Niki

Experimental

Growth method: conventional Molecular beam epitaxy Sources: Cu(7N), In (7N), Se(6N) Substrate: Ge (001) Growth temperature: 450°C Cu/In ratios: γ =0.4-2.2(changing the In beam flux) Substrate etching solution: 1HF:1H₂O₂:30H₂O Thermal cleaning process : 640°C Characterization: XRD, RHEED, SEM,EPMA

<RHEED patterns from thermal clean Ge(001) surface>

Near stoichiometric CIS film was not observed second phase

独立行政法人產業技術総合研究所

CuInSe₂ (CIS) films with Cu/In ratios of γ =0.4-2.2 have been grown on (001)-oriented Ge substrates by molecular beam epitaxy at substrate temperature of T_s=450 °C.

In situ RHEED analysis indicated the epitaxial growth as well as the chalcopyrite structure.

RHEED patterns along the [-100] direction showed the spots characteristic of the chalcopyrite structures, also indicating the c-axis normal to the substrate.

No secondary phase detected in XRD at Cu-rich and near stoichiometric but In-rich CIS films were observed.