

固相結晶化法を用いたIn₂O₃:H透明導電膜

シリコン新材料チーム 鯉田 崇

発表内容

・はじめに

なぜ近赤外透過・高移動度透明導電膜(NIR-TCO)の開発 最近のNIR-TCO NIR-TCOを用いた太陽電池

・ In₂O₃:Hの構造・電気・光学特性

TEM, TDS, Hall, SE

高移動度 (>100 cm²/Vs @ 170°C)の要因

・まとめ

なぜ近赤外透過・高移動度TCOの開発?

NIR-TCO vs 一般的なTCO

高移動度TCO:太陽電池への適用例

CdTe

Selvan, SOLMAT <u>90</u>, 3371 (2006). In₂O₃:Mo Intrinsic layer-Si In₂O₃:Mo Intrinsic-ZnO

mobility, µ

>80 cm²/Vs

and no free

carrier

Superstrate-type nc-Si:H

Bifacial CIGS Miyano, PVSEC-17 806 (2007).

Dye sensitized solar cell

Bowers, Prog. Photovolt. <u>17</u>, 265 (2008).

a-Si:H/c-Si heterojunction

Koida, APEX <u>1</u>, 041501 (2008).

with fiber

orientation

texture

Substrate-type µc-Si:H

Koida, TSF <u>518</u>, 2930 (2010).

In₂O₃:H 薄膜の製造方法

Film thickness: ~70 nm

AIST

AIST

電気特性

Film thickness: ~70 nm

キャリアの有効質量

H+

キャリアの散乱機構

結晶化によりキャリア散乱&生成機構の変化

まとめ

近赤外透過·高移動度In₂O₃:H 薄膜

①電気特性:

結晶化前後:移動度向上(2.6倍)、キャリア濃度減少(~1/2倍)

 $42 \rightarrow 108 \text{ cm}^2/\text{Vs}$ $4.6 \times 10^{20} \rightarrow 2.1 \times 10^{20} \text{ cm}^{-3}$

②キャリアの有効質量:

結晶化前後: $0.37m_0 \rightarrow 0.34m_0$ 掛法中本ではなくに道葉のまた物的

構造由来ではなく、伝導帯の非放物線性による

③キャリアの緩和時間:

µ_{Hall} (µ_{opt}) ~ µ_{ii} (z=2):非晶質
~ µ_{ii} (z=1):結晶質
⇒結晶化によるキャリアの生成機構の変化 酸素欠損⇒H⁺を示唆