● CIGS太陽電池のアルカリ金属添加効果 ~軽いリチウムLiから重いセシウムCsまで~

石塚尚吾1、上川由紀子1、西永慈郎1、田口昇2 産業技術総合研究所 1省エネルギー研究部門、2電池技術研究部門

研究の目的

68

0

Alkali-metal effects on CIGS solar cells have long been studied but detailed mechanisms are still open to discussion

結果と考察

LiF@1st-stage / RbF@1st-stage

SIMS depth profiles

XRD, N_{CV} , PL, solar cell parameters

|PDT(CIGS薄膜形成後のアルカリ金属添加)による表面形態変化は、軽いLi、Naで| は見られず、Kもしくはそれより重いアルカリ元素でのみ明瞭に観察される。一方、 CIGS製膜中に存在することで小粒径化を招くのはNaかそれより重い元素である。

Alkali-effects on CIGS growth orientation (XRD)

Previous reports

This study

Concentration in the C(I)GS surface/back surface No Li Na K Rb Cs Yes

Naとそれより重いアルカリ金属はCIGS表面やCIGS/Mo裏面界面 に多く偏析する傾向が知られるが、軽いLiではそのような傾向は見 られない。

PL & Solar cell device properties

Naよりも重いアルカリ金属はCIGS太陽電池性能の向上に大きな 効果があるが、軽いLiはほとんどない。Li添加でも性能向上が見ら れるCu₂ZnSnS₄系太陽電池とは対照的な結果。

製膜中にNaが存在することで(112)配向が強くなることが知られるが、Liではその傾 向は見られない。一方、重いRbではNaと同様に(112)配向が強くなる傾向を確認。

CIGSにおけるアルカリ金属添加効果は、薄膜組成や添加方法にも依存す るが概ね下記の傾向が確認された。

Alkali-metal effects on Cu(In,Ga)Se₂ [Ga]/([Ga]+[In]) ~ 0.3

CIGS film & device property	Li	Na	K	Rb	Cs
Surface pore formation (PDT)	×	×	0	0	0
(112) ↑	×	\bigcirc	-	0	-
Grain size (doping during growth) \downarrow	×	0	0	0	-
<i>N</i> _{cv} (PDT) ↑	×	0	0	0	0
<i>N</i> _{cv} (doping during growth) ↑	0	0	0	0	-
PL intensity ↑	\bigtriangleup	0	0	0	0
PL lifetime ↑	\bigtriangleup	0	0	0	0
PV efficiency ↑	\bigtriangleup	0	0	0	0
(112): (112)/(204,220) growth orientation ratio, PDT: Postdeposition treatment, $N_{\rm CV}$: Nominal carrier density, PL: Photoluminescence, PV: Photovoltaic.			O, △, ×: This study -: Future work (probably ○)		

謝辞

本研究は、公益財団法人三菱財団自然科学研究助成(ID: 201910001)、 JSPS科研費19K05282、および一部NEDOの支援により実施されました。 厚く御礼申し上げます。 また、デバイス作製および評価測定における樋口博文氏、飯岡正行氏、 高橋秀樹氏の協力に感謝致します。

参考文献

本研究成果の詳細は下記文献より参照可能です。 •S. Ishizuka and P. J. Fons, ACS Appl. Mater. Interfaces 12, 25058 (2020).

•S. Ishizuka, N. Taguchi, J. Nishinaga, Y. Kamikawa, and H. Shibata, Sol. Energy **211**, 1092 (2020).

•S. Ishizuka, N. Taguchi, and P. J. Fons, J. Phys. Chem. C 123, 17757 (2019).

