

太陽電池セル・モジュールの 劣化機構と信頼性向上技術

令和元年12月18日

国立研究開発法人産業技術総合研究所

太陽光発電研究センター

副研究センター長

増田 淳

共同研究者(敬称略)

產業技術総合研究所:城内 紗千子、原 由希子、 棚橋 紀悟、山本 千津子

北陸先端科学技術大学院大学:大平 圭介、山口 世力、 小松 豊、鈴木 友康

奈良先端科学技術大学院大学:石河 泰明、

Dong. C. Nguyen

東京農工大学:岩見健太郎 石川県工業試験場:橘泰至 豊田工業大学:中村京太郎

本研究成果の一部は、新エネルギー・産業技術総合開発機構の委託により得られた。

太陽電池モジュールの劣化

劣化の種類:外観、出力低下、・・・ 本講では出力低下の観点から劣化を扱う

モジュールに与えられる負荷が同じでも、モジュールの 種類が異なれば、出力低下の程度は異なる。

出力低下の程度が同じでも、モジュールの種類が異なれば、その原因は異なる。

エレクトロルミネセンスは便利であるが、もう一歩踏み込まないと微視的原因に迫ることはできない

太陽電池のエネルギー変換過程での損失

太陽電池の性能低下要因(1) 入射光遮蔽

太陽電池の性能低下要因(2) 集電特性低下

RPV

AIST 太陽光発電研究 成果報告会 2019

太陽電池の性能低下要因(3) ダイオード特性低下

太陽電池モジュール劣化(出力低下)の 要因はさほど複雑ではない

- 1) 入射光の遮蔽(セルに届く光の量が低減する)
- 2) 集電劣化(発電しても集電できない)
- 3) 発電劣化=起電力低下

(ダイオード特性の低下により、発電能力その ものが劣化する)

重要な負荷は紫外光、湿熱、電圧と、それらの組合せ

太陽電池モジュール研究の課題(1)

屋外劣化事例の観測

- ・モジュールの初期特性が不明な場合が多い。
- 市販モジュールのため部材や構造が不明で科学的解析が困難。
- •部材や劣化要因が多岐にわたり複雑。
- 長期曝露を経たモジュールは現時点で流通しているモジュールとは 異なり、成果のフィードバックが困難。

劣化モジュールの評価

- 太陽電池モジュールが、セラミックス(カバーガラス)、高分子(封止 材、バックシート、エッジシール材、ポッティング材)、半導体(セル)、 金属(電極、配線、フレーム)等の様々な材料の組合せで構成され るため、劣化現象はこれら部材の界面や相互作用とも関係し、極め て複雑である。様々な分野の専門家の連携が求められる。
- ・モジュールは封止材で強固に固められているため、微小分析用の サンプルの取出しが容易ではない。

太陽電池モジュール研究の課題(2)

試験法開発

- ・多岐にわたる劣化要因を同時に組合せた試験は現実的でない。
- ・光照射と組み合わせた試験は極めて重要であるが、均一性や温度の安定性の観点で容易ではない。
- ・屋外で生じる劣化と同じ劣化を生じさせることは困難。
- ・屋外曝露に対する加速係数の決定も容易ではなく、どこまで厳しい 試験を実施すれば、寿命を保証できるかがわからない。オーバース ペックにもなりがちである。
- ・設置地域により求められる試験も異なるはずである。
- 試験に長時間を要する。

モジュールの信頼性向上

- ・常にコストを問われる。
- 寿命や信頼性は可視化できず付加価値になりにくい。

入射光の遮蔽

- ・ガラスの汚損(降砂、降灰)
- ・封止材の着色 透明導電膜の着色
- ・封止材の剥離による白濁 (原因はPID(後述))

光の散乱が生じるので、一概に出力低下に繋がるともい えないが、BIPVでは外観上の問題で建物価値を毀損

シリコンヘテロ接合太陽電池モジュールの劣化要因解析 透明導電膜分析 In K端XANESスペクトル

透明導電膜に用いられるIn₂O₃:Wが還元し、In金属が析出し、透 過率が低減

S. Yamaguchi et al., Prog. Photovolt.: Res. Appl. 26, 697 (2018).

集電劣化

- ・大半の出力低下の原因
- pn接合には異常なし
- •物理的•機械的劣化
 - インターコネクタの破断、剥離フィンガー電極とバスバー電極の交点での破断

・化学的腐食劣化 電極(特に受光面側フィンガー電極)の化学的変性

出力とモジュール内酢酸量の高温高湿試験時間依存性

有限要素法による水蒸気浸入、酢酸生成・拡散のシミュレーション

RCPV

AIST 太陽光発電研究 成果報告会 2019

セルに対する酢酸蒸気曝露試験とモジュールに対する高温高湿試験の対比

電極劣化の直接的証拠

A. Masuda et al., Proc. 43rd IEEE PVSC, 2016, p. 904.

封止材(EVA)の違いによる電極劣化の差異

A. Masuda and Y. Hara, Jpn. J. Appl. Phys. 57, 04FS06 (2018).

セルの違いによる電極劣化の差異

A. Masuda and Y. Hara, Jpn. J. Appl. Phys. 57, 04FS06 (2018).

複合負荷による電極劣化

湿熱負荷による集電劣化対策の指針

- 標準的な結晶シリコン太陽電池において、最終的に劣化を決定するのは電極ペースト材料である。
- 酸を発生させない封止材を用いれば、安価な電極ペーストの使用も可能。
- 酸で劣化しない電極ペーストを用いれば、安価な封止材の使用も可能。
- ハイバリアバックシートは場合によっては劣化を促進させる。酸を 蓄積させないモジュール構造が重要。
- 電極ペースト、封止材、バックシートのそれぞれにおいて様々な 仕様を開発することにより、幅広いモジュールの設計が可能にな る。どの部材が選択されるかは、コストと設計寿命により決まる。
- ハイバリアバックシートは薄膜系ならびに有機系太陽電池にとっては重要。

起電力低下(=電圧誘起劣化(PID))

- ・PIDとは「セルとフレーム間の電位差で誘起される 劣化」の総称である。
- ・太陽電池の種類毎にPIDのメカニズム解明と対策 が必要である。

これまで想定されてきたPIDの原因

1. Negative voltage to the Si cell results in leakage current

電圧誘起劣化(PID)は以下の3通りに区分できる。 この「3通り」は3段階で進行するものを3通りに区分したわけではない

PV

SiO₂膜の無いn型フロントエミッターセル を用いたモジュールのPID

・ SiN_xへの正電荷蓄積に由来する劣化がない

・ Na起因の劣化が早い時刻で発現、程度も大

PIDにおけるSiO₂膜の影響

- ・ SiN_x-Si間のキャリア移動の阻害
 → 電荷蓄積起因のPID発現の要因
- ・ Na由来の劣化に対する遅延効果

T. Suzuki *et al.*, Jpn. J. Appl. Phys **59**, SCCD02 (2020).

AIST 太陽光発電研究 成果報告会 2019

- ・軽度の場合が、第二段階の劣化の起源
- ・本講演では便宜上PID-2と呼ぶ。
- ・シャントを引き起こす場合は、PID-s (PID-shunt)と呼ばれる。
- ・可動イオンがセル中に侵入し、シャントパスや再結合
 中心を形成することが原因
- ・可動イオンの起源はカバーガラスに限らない。【 産総 研】
- ・可動イオンはNaに限定されない。すなわちセル表面 に存在する各種可動イオンもPID-2の原因となる。 産総研、豊田工大、明治大、ナミックス
- ・pベースばかりが注目されてきたが、nベース(フロント エミッタ)でも発生する。ただし、pベースではシャントを 起こすが、nベースではn値の増加を招き、シャントは 起きない。【北陸先端大】
- ・セル中にはSIMSで観測されるほどの濃度のNaは平 均的には侵入していない。むしろ、局所的に高濃度の Naが侵入しているものと思われる。【北陸先端大】
- ・PID-2を引き起こす電界と逆方向の電界印加(p, nと もに確認済)もしくは電界未印加でも熱アニールにより 回復(pで確認済)する。

Naの存在 形態

図面提供:大平 圭介 教授(北陸先端科学技術大学院大学)

SiN_xのバンドギャップに対応する400 nm以下の紫外光照射によるPID緩和 効果を確認【<u>産総研</u>】 ・紫外光照射によるPID緩和もSiN_xの導電
 率が増加し、SiN_xに印加される電界が弱まることが原因。【奈良先端大、豊田工大】

実際の屋外曝露環境では、発電時すな わち光照射時しか、セルに高電圧は印 加されない(部分影を除く)。 この結果は、暗所でのPID試験が、実 際よりも過剰な試験となっている可能性 を示唆するとともに、部分影がPIDを促 進する可能性をも示唆するものである。

A. Masuda and Y. Hara, Jpn. J. Appl. Phys. **57**, 08RG13 (2018).

Y. Tachibana *et al.*, 27th PVSEC, 7ThPo.210, 2017.
A. Masuda *et al.*, 7th EM-NANO, A6-3, 2019.

シリコンヘテロ接合太陽電池モジュールにおける 透明導電膜の還元(再掲)

S. Yamaguchi et al., Prog. Photovolt., 26, 697 (2018).

n型フロントエミッター型モジュールの長時間PID

480 h, -1000 V, 85 °C

結晶Si系での剥離 EVA/セル間の剥離なの で、セルそのものの劣化 との定義からは外れ、発 電特性にはあまり影響し ない。

薄膜Si系での剥離 セル電極(TCO)の剥離 なので、発電特性に大き く影響する。

A. Masuda and Y. Hara, Jpn. J. Appl. Phys. 56, 04CS04 (2017).

結晶Si系、薄膜Si系ともに剥離は屋外でも観測

電圧誘起劣化対策の指針

- ・PID-1に関しては、反射防止膜に電荷を蓄積させない構造をもた せる。⇔パッシベーション性能とのトレードオフ
- •PID-2に関しては、反射防止膜に印加される電界をいかに低減させるかが重要。

これまでの対策

SiリッチSiN_x膜の採用⇔パッシベーション性能とのトレードオフ 高抵抗封止材の採用⇔コストとのトレードオフ

セル表面を透明導電膜で被覆し、フィンガー電極を介してエミッタ層と同電位にすることで、反射防止膜に電界が印加されない 構造を採用 城内他、特願2019-13756、昨日のポスターP66

Si中にNaが侵入するメカニズムを知ることが、抜本的対策のために最重要。

外的劣化因子と異種材料間の相互作用

まとめに代えて

- ・国内では太陽電池の研究テーマとして、セルの高効率化に重点が置かれ、モジュールに関しては学問分野として軽視されてきた経緯がある。一方、欧米では大学、研究機関を中心に長年の研究の蓄積がある。国内太陽電池メーカーは相当数のデータを取得しているはずであるが、ノウハウとして秘匿されている場合が多い。
- 太陽電池モジュールの信頼性に関して、議論できる場そのものが 少ない。
- エネルギーネットワーク技術全盛の時代であるが、モジュールよりも川上側の研究の意義が揺らぐことはなく、材料科学やデバイス物理に根差したモジュール信頼性研究の一層の推進が求められる。とりわけPIDは半導体のpn接合そのものに関連する劣化現象であり、セル分野の研究者の積極的な参画を期待する。