

Development of high efficiency PERC cell

Supawan Joonwichien, Yasuhiro Kida, Masaaki Moriya, Katsuhiko Shirasawa, Hidetaka Takato 産業技術総合研究所 再生可能エネルギー研究センター 太陽光チーム

PERC technology

The concept of advanced silicon-based solar cells with a dielectric passivation layer at the rear of the cell is one of the most promising structures for changing the conventional cell into a more-efficient passivated emitter rear contact (PERC) cell. The presence of a passivation layer at the rear of the cell permits low surfacerecombination velocities, a steadier flow of electrons, and an improved performance. Consequently, excellent rear-surface passivation is essential, and is one of the most important issues in improving the efficiency of PERC structures.

6. Possible mechanism

Ideal schematic illustrations of the surface band diagrams

4. Experimental details

- CZ-Si (156 mm $\, imes\,$ 156 mm $\, imes\,$ 200 μ m), 2.3 to 2.9 $\Omega\cdot$ cm
- AlO_x passivation technologies
 - ALD (20 nm)
 - Deposition temperature: 200C
- Post-deposition annealing (PDA) temperature
- 450C, 650 C
- PECVD-SiN_x films
 - deposition temp. at 450 C
 - Reflective index = 2.1
 - 190 nm thick at rear, 80 nm thick at front
- Thermal treatment conditions
 - Under N₂ ambient
 - 450C for 30 min

- ullet PDA process improves surface passivation, as indicated by $J_{\rm sc}$ as well $V_{\rm oc}$ values.
- ☐ FF value increased upon PDA applied, indicating that series resistance is improved.
- ☐ A suitable firing temperature is about 800C, and cell performance decreases as increasing firing temperatures.
- ☐ A PDA for 30 min at 450 C under N₂ was required to obtain a high level of surface passivation for ALD-Al₂O₃ films, owing to local reconstruction of the Al₂O₃, and the consequent increase in the density of negative fixed charges (Q_f) at the interface [2, 3].

[2] Joonwichien S. et al., Energy Procedia (2016). To be published [3] Hoex B. et al., Appl. Phys. Lett. 2006; 89: 042112.

7. Rooms for improvement

8. Summary

- ☐ We investigated the effects of PDA on the performance of PERC cells in order to improve the quality of surface passivation.
- ☐ It is found that PERC cell performance is improved after introducing to PDA under dry N₂ annealing, accorded to the full activation of fieldeffect passivation, resulting in a lower surface recombination velocity, which can be realized with increased J_{sc} and V_{oc} values.
- ☐ It is assumed that the more negatively charged traps originating from the steam are created in the ALD-Al₂O₃ films giving rise to an upward more in band bending.
- and is then high performance of PERC cell.