

色素増感太陽電池の 耐久性向上を目指した ルテニウム錯体色素の開発

太陽光発電研究センター 機能性材料チーム 〇舩木 敬・小野澤 伸子・佐山 和弘

発表内容

◆色素増感太陽電池の構造と発電原理

- ◆ 高い安定性を持つルテニウム錯体色素の開発
 - ●これまでの検討
 - 新規合成した色素の性能評価
- ◆光安定性の評価
 - ●大気中での加速試験
 - ●水や酸素の影響評価

色素増感太陽電池の一般的な構造

色素増感太陽電池の発電原理

AIST

AIST

これまでの研究成果

高性能ルテニウム錯体色素の開発

10%以上の変換効率を示す近赤外色素を多数開発

目的

高い安定性を持つ色素の開発や色素の劣化メカニズムの解明 長寿命化と高効率化を同時に満たす指針

一般的なルテニウム錯体色素(基準色素)

- O. Kohle et al., *Adv. Mater.*, **1997**, *9*, 904.
- H. G. Greijer et al., Solar Energy, 2003, 75, 169.
- T. Lund et al., *Sol. Energy Mater. Sol. Cells*, **2007**, *91*, 1934.

これまでの検討

ブラックダイ(Eff: 9.6%)

二座配位子の導入 (NCS基を一つ含む) FT19(Eff: 6.5%)

三座配位子の導入 (NCS基を含まない)

光照射による変換効率の変化

新たに合成した色素

- ・ 新たな三座配位子の導入
- ・ドナー性が大きいシクロメタル化配位子
- ・置換基導入により、エネルギー準位の微調整が可能

T. Funaki et al., Inorg. Chem. Commun., 2014, 46, 137.

電池性能の評価

色素	TBP ^a /M	<i>J_{sc}</i> /mA cm⁻²	V _{oc} /V	ff	<i>η</i> /% Ι	PCE _{max} /%
FT102	0.1	9.1	0.53	0.66	3.2	47
FT118	0.1	11.7 増	0.55 増	0.69	4.4 増	54
FT90	0.1	16.2 🕂	0.62	0.64	6.5 🕂	63
FT117	0.1	18.3 🗸	0.62 🗸	0.63	7.2	68
FT19	0.05	17.4	0.64	0.71	6.5 🔟	71
ブラックダイ	0.5	19.0	0.71	0.71	9.6	70

^a tert-ブチルピリジン

国立研究開発法人產業技術総合研究所

色素増感太陽電池の耐久性評価

簡便かつ短時間で 色素の安定性を 評価したい

一般的な色素増感太陽電池の構造

光照射による変換効率の変化

色素を吸着した電極に光照射し電池を作製

色素の光劣化に対して水や酸素が与える影響

レッドダイやブラックダイなどNCSを含む色素

まとめ

- 三座配位子のフェニルピリジンカルボキシラト誘導体を有する新 規シクロメタル化ルテニウム錯体を合成し、色素としての性能を 評価した。
- ・ 配位子の構造修飾により、変換効率を向上することが出来た。
- ・ 今回検討した色素の中では、FT117が最も高い7.2%の変換効 率を示した。
- NCSを含まない色素では基準色素などのNCSを含む色素とは、
 光劣化のメカニズムが異なることが示唆された。

