国立研究開発法人 產業技術総合研究所

分析計測標準研究部門 第5回シンボジウム

技術革新を支援する 部側。分析ツツューション

JASIS2019 コンファレンス

報告集

日時: 2019年9月6日(金)10:00~15:30

場所:幕張メッセ国際会議場 国際会議室

主催:産業技術総合研究所 計量標準総合センター

分析計測標準研究部門

產総研 産業技術総合研究所 国立研究開発法人

国立研究開発法人 産業技術総合研究所 分析計測標準研究部門 第5回シンポジウム

技術革新を支援する 計測・分析ソリューション

JASIS2019 コンファレンス

報告集

2019年9月6日(金) 幕張メッセ国際会議場 国際会議室

分析計測標準研究部門第5回シンポジウム報告集の発刊にあたって

産業技術総合研究所計量標準総合センター**分析計測標準研究部門**の第5回シンポジウムを、JASIS **2019**のコンファレンス(令和元年9月6日(金)10:00~15:30、幕張メッセ国際会議場 国際会議室)として開催することができました。ご多忙のなか本シンポジウムにご参加いただきました皆様、ならびに、シンポジウムの開催にご尽力いただきました関係者の皆様に深く御礼申し上げます。

当研究部門では、音響・超音波、放射線、中性子線に関する国家標準の開発・維持・供給を行う一方で、各種量子線、極短パルスレーザー光、イオンビーム、超音波などを用いた先端計測技術を研究開発し、新材料の開発において不可欠な基礎物性値、欠陥・不純物の形状・濃度・分布、機能発現のメカニズムなどに関する計測データを提供することによる産業界への橋渡しを目指しています。

今回のシンポジウムでは「技術革新を支援する計測・分析ソリューション」を講演テーマに取り上げました。基調講演では、株式会社日産アーク 松本 隆様ならびに伊藤 孝憲様に「スマート社会に向けた量子ビーム解析への期待と分析会社の責務」のご講演の中で、今後のモノつくりにおける AI を駆使した材料分析の変革について量子ビーム解析を具体例としてご紹介いただきました。引き続き当研究部門の中性子ビーム、レーザー分光を用いた計測ソリューションの事例と先端分析計測機器群による新材料開発支援プラットフォームを紹介いたしました。また後半では、当所計量標準総合センター研究戦略部 加藤 英幸イノベーションコーディネータが「技術コンサルティング制度を利用したオンデマンド計測ソリューション」の演題で、産総研の各種連携制度の中で比較的少ないエフォートで高いコミットメントが得られる上記制度について紹介いたしました。次いで、当研究部門の放射線、超音波、デジタルホログラフィ、パルスレーザー、原子間力顕微鏡を用いた計測ソリューションの事例を紹介いたしました。さらに、ポスターセッションにて、当研究部門全般の最新の研究成果を紹介いたしました。

本報告集はシンポジウム当日の講演資料、ポスター発表資料を収録したものです。今回のシンポジウムが、皆様方への情報提供、ならびに今後の協力関係構築の契機となれば幸いです。

今後も内外機関との連携構築に向けてシンポジウムや公開セミナーを積極的に開催して情報発信を 行っていく所存です。当研究部門の研究活動に対しましてご理解いただき、引き続きご指導、ご支援を 賜りますよう、よろしくお願い申し上げます。

2019年10月

産業技術総合研究所 計量標準総合センター 分析計測標準研究部門 研究部門長 野中 秀彦

目 次

報告集の発刊にあたって・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
野中 秀彦	
プログラム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
·····□頭発表·····	
【依頼講演】「スマート社会に向けた量子ビーム解析への期待と分析会社の責務」・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
【依頼講演】「技術コンサルティング制度を利用したオンデマンド計測ソリューション」・・・・・・・・1 加藤 英幸	4
「分析計測標準研究部門の概要」・・・・・・・・・・・・・・・・・・・・・・・・2 野中 秀彦	3
「構造材料分析のための中性子ビーム施設と活用」・・・・・・・・・・・2 木野 幸一	7
「中性子標準を基盤とした半導体ソフトエラー評価のための計測技術」・・・・・・・・・・・・30 松本 哲郎	6
「時間分解レーザー分光による光機能材料評価」・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
「先端分析計測機器群による新材料開発支援プラットフォーム」・・・・・・・・・・ 50 齋藤 直昭	6
「放射線計測機器の性能試験・評価」・・・・・・・・・・・・・・・6 加藤 昌弘	1
「超音波利用機器の性能・安全性評価技術の開発」・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
「デジタルホログラフィを用いた高精度面外変位計測」・・・・・・・・・・・・・・・ 76 夏 鵬	6
「短パルスレーザーによる加工技術の産業応用」・・・・・・・・・・・・・8. 田中 真人	5
「ナノ粒子サイズ分布計測における原子間力顕微鏡の役割」・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4

・・・・・ポスター発表・・・・・

A. 材料を見える化する計測分析技術

「レーザー加工材料の特性評価技術の開発」・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
「イオン付着質量分析法によるガソリンのプラズマ改質過程の解析」・・・・・・・・・ 116 浅川 大樹
「プロトン性イオン液体を用いた二次イオン質量分析(SIMS)用イオンビーム源の開発」・・・・・ 11 藤原 幸雄
「大気中での電子状態の評価:二光子-光電子収量分光法(2P-PYS)の開発)」・・・・・・・ 119 細貝 拓也
「構造材料分析のための中性子ビーム施設と活用」 ・・・・・・・・・・・・・・・・※(35 木野 幸一
「産総研の低速陽電子ビーム施設」・・・・・・・・・・・・・・・・・ 125 オローク・ブライアン
「薄膜対応•空孔計測装置」···········130 大平 俊行
「先端分析計測機器群による新材料開発支援プラットフォーム」・・・・・・・・・・・・※(60 齋藤 直昭
B. インフラの健全性を定量化する先端計測
「構造物診断用高エネルギーX 線源の開発」・・・・・・・・・・・・ 139 豊川 弘之
「炭素繊維の異方性を考慮した曲げ特性解析」・・・・・・・・・・・ 140 永井 英幹
「機械学習を適用した先端超音波探傷技術の開発」・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
「インフラ検査用 X 線非破壊検査技術の開発」・・・・・・・・・・・・・・・・・ 156 加藤 英俊

※口頭発表と共通

C. 医療・環境を正確に測る計量標準技術

擊測定 山田	器の技能試験」・・・・・・・・・・・・・・・・・・・・・・・・・・ 15 桂輔	;5
用超音 千葉	波機器の安全性確保に資する広帯域超音波瞬時音圧の計測原理の有効性検証」·16 裕介	60
子ミメラ 白井	イック OCT と波面制御技術の融合」・・・・・・・・・・・・・・・16 智宏	55
ンモニ 古川	タ校正システムの試運転の結果について」・・・・・・・・・・・・・ 17 理央	'1
_{第モニ} 黒澤	タリング線量計の現地校正手法の開発」・・・・・・・・・・・・・・・・ 17 忠弘	7
部放射 清水	線治療用水吸収線量の現地校正技術の開発」・・・・・・・・・・・・・・・ 18 森人	32

- プログラム -

開催日時 9月6日(金) 10:00~15:30

【午前の部】 司会: 副研究部門長 権太 聡

10:00 開	会
---------	---

10:05	分析計測標準研究部門の概要	分析計測標準研究部門長野中 秀彦
10:15	【依頼講演】 スマート社会に向けた量子ビーム解析への期待と分析会社の責務	株式会社 日産アーク 代表取締役常務 松本 隆 様 テクニカルマネージャー 伊藤 孝憲 様
11:00	構造材料分析のための中性子ビーム施設と活用	X線・陽電子計測研究グループ 主任研究員 木野 幸一
11:15	中性子標準を基盤とした半導体ソフトエラー評価のための計測技術	放射能中性子標準研究グループ 主任研究員 松本 哲郎
11:30	時間分解レーザー分光による光機能材料評価	ナノ分光計測研究グループ 主任研究員 松﨑 弘幸
11:45	先端分析計測機器群による新材料開発支援プラットフォーム	分析計測標準研究部門 副研究部門長 齋藤 直昭

12:00-12:45 休 憩(昼食)&【ポスター発表】

【午後の部】 司会: 副研究部門長 時崎 高志

12:45-13:15 【ポスター発表】(コアタイム) 分析計測標準研究部門の研究紹介

13:30	【依頼講演】 技術コンサルティング制度を利用したオンデマンド計測ソリューション	計量標準総合センター研究戦略部イノベーションコーディネータ加藤英幸
14:15	放射線計測機器の性能試験・評価	放射線標準研究グループ 主任研究員 加藤 昌弘
14:30	超音波利用機器の性能・安全性評価技術の開発	音響超音波標準研究グループ 主任研究員 吉岡 正裕
14:45	デジタルホログラフィを用いた高精度面外変位計測	非破壊計測研究グループ 研究員 夏 鵬
15:00	短パルスレーザーによる加工技術の産業応用	放射線イメージング計測研究グル ープ 主任研究員 田中 真人
15:15	ナノ粒子サイズ分布計測における原子間力顕微鏡の役割	ナノ顕微計測研究グループ 主任研究員 重藤 知夫
15:30	閉会	分析計測標準研究部門長野中 秀彦

口頭発表

【依頼講演】

スマート社会に向けた量子ビーム解析への期待と分析会社の青務

株式会社 日産アーク 松本 隆、 伊藤 孝憲

Society 5.0 が将来のスマート社会を提唱している。これは決して夢物語ではなく、人類に課せられた課題への現実的ソリューションを示唆しているが、産業界の変革は Industry 4.0、即ち、「AI による労働、思考の代替」として表現されている。この時代では、ものつくりも「仮説検証サイクルを回す」のではなく、AI を活用した「データ駆動型」に変革することを意味している。そしてこれに伴い、材料分析もその位置づけは大きく変わり、また、機能的変革を求められることになる。

データ駆動型への移行は、エンジニアリングが、従来の実体に基づく仮説検証サイクルを回す方式から、機械による予測型に変革することを意味している。ここでは、バーチャルに材料の最適化を行うことが可能となるが、蓄積したビッグデータ、計算による構造モデルなどに基づき、材料の「設計図」にあたる「記述子」(Descriptor)と要求機能を紐付けた解析が同時に必要となる。すなわち「設計図面」と「実体」の整合確認をスマートに行うことが材料分析の使命となる。(図 1)

記述子は多岐に渡り、また、階層化していることから、材料分析ラボの装置で全てを確認することは出来ないが、量子ビームを活用した、例えば、スペクトル解析により複数の情報を得ることが出来る。また、量子ビームの活用は、マルチモーダル、マルチプローブ、マルチスケールの計測を可能にし、「データ駆動型」エンジニアリングにおける実体確認、即ち、要求機能と記述子の相関性や整合、不整合を瞬時に見極めることを容易にする。このニーズは、時間、空間分解能の高い放射光解析、材料透過能の大きい中性子線解析への期待となる。(図 2)

一方、記述子と要求機能の紐付は、機械(AI)の仕事であり、これをマネジメントする「人の脳」とを橋渡 しする必要が生じるが、このメディアがイメージングの手法で、これもまた、量子ビームを用いた解析への 期待となる。

図1. データ駆動型材料探索プロセスの一例

図 2. 鋼、アルミ接合部のブラッグ エッジスペクトル (NEDO「中性子等量子ビームを用いた構造

材料等解析技術の開発 | の一環として実施)

ASIS2019コンファレンス 第5回シンポジウム 分析計学標準部門

量子ビーム解析への期待と スマート社会に向けた 分析会社の責務

NISSAN ARC

核式会社日産アーク 松本 陸 t-matsumoto@nissan-arc.co.jp 2019.09.06

○松本隆,伊藤孝憲

民間分析会社による価値創出

3 2019 NISSAN ARC, LTD.

株式会社日産アークのご紹介

(日産自動車と関連会社の出資でスタート) 設立 1990.12.17

1991: 外版開始

Athan

1996: 原木少だカンター 国影

2002: 日産自動車100%子会社化

2004; SPring-8利用開始 2010; LEAF製品化支援 2013; 外版率50%超

###

2014:「京」利用開始 2015:文科省科研費認定機関

定在為:

華奈三

華後三

華後三

華後 证業員数:129名 (As of 2019.4.1.) 主たる国内顧客数:5,000社以上

2019 NISSAN ARC, LTD

クルマの全てを解き明かす材料分析

■あらゆる材料・プロセスに関わる様々な特性・現象を捉え、 解決に導くためのサポートを提供

4 © 2019 NISSAN ARC, LTD.

NISSAN ARC

NISSAN ARC

製造業における製品開発プロセス

■プロダクトサイドでは最適化すべきパラメータが増え複雑さが増す

2019 NISSAN ARC, LTD.

NISSAN ARC マーケット 数品化される 持続可能な事業 膨大な試行錯誤・網羅的検証プロセス 生産技術 安全性・信頼性 長いプロセスを経て、 **泰斯技術** ダーセインの浦 製造業における製品開発プロセス デバイス設計 生產技術 最適化 新規事業 ■新原理・新材料の発見から、 先行關発 材料關稅材料最適化 死の谷 シーズ研究 経験と勘に依存 2019 NISSAN ARC, LTD. 原理発明 記書

業界動向を見据えたサービス準備・展開

全固体電池のR&Dを支援するサービス展開の例 ■ LIB,

11

Society 5.0 / Industry 4.0

第一次産業革命(蒸気機関による機械化) 第二次産業革命(電力、石油による大量生産) 第三次産業革命(コンピュータによる自動化) 一次産業革命

第四次産業革命

思考代替) (人工知能(AI)による労働、

分析・計測事業は・・・無くなる? 生き残る? スマート社会に貢献する

2019 NISSAN ARC, LTD.

NISSAN ARC

データ駆動型 エンジニアリング

10 ■データ科学(Materials Informatics)がエンジニアリングを変え、

最適化のために仮説検証のPDCAを回す 性能評価 其作 仮説設計 結果検証 仮說検証型 報報

予測確認型(アータ駆動型) アックアータ解析に基立さ在能がの構造を 予測し設計する プロセス目標 報報 これから 最過構造 型線原衛

仮説・試作・評価検証のための定型的分析は激減~開発不具合も激減

のシナジーを発想出来ないと… AI - 分析・計測 - 人の能力

10 @ 2019 NISSAN ARC, LTD.

NISSAN ARC

Materials Informaticsによる予測と検証

ビッグデータ解析、理論モデルによる解析:Materials Informaticsは 検証手段としての材料分析と併用することで「解析の価値」を向上 させる

11 © 2019 NISSAN ARC, LTD.

NISSAN ARC

AIの必然性とDescribtor :記述子

- ■AIの適用で必ず必要となる材料の「Descriptor: 記述子」
 - ■「人」には多岐に渡るDescriptorの理解力が問われる
 - ■検証分析ではDescriptorの確認が行われる

AIの必然性とDescriptor :記述子

- ■AIの適用で必ず必要となる材料の「Descriptor:記述子」・・・
 - ■「人」には多岐に渡るDescriptorの理解力が問われる

大型施設の充実と活用

課題

ゲータ 駆動型解析における Descriptorの確認、 イメージングには必須。 最先端技術を総合的に活用し、開発・市場品質対応にも利用 しかし、サービス視点で産業利用には課題も多い

階層的構造解析のキーテクノロジー

- ■マルチプローブ計測・マルチモーダル計測
- ■マルチスケールイメージング
- ■ショコレーション・インフォマティクス

ここにある。 量子ピーム活用の意義は、

User friendlyなサービス提供が求められるようになる。 「データ駆動型エンジニアリング」の必要条件、かつ 研究だけでなくエンジニアリングフェーズでも、

15 © 2019 NISSAN ARC, LTD.

NISSAN ARC

スマート社会と材料分析

14 @ 2019 NISSAN ARC, LTD.

- ■材料分析会社にはスマート社会実現に貢献する責務がある
- AIを活用したデータ駆動型エンジニアリングを促進させるために、 記述子と性能、特性の紐付を行うことも分析会社の役割となる
- ■多岐に渡る記述子を分析的に取得するには、「マルチ計測」が 合理的で、量子ビーム解析の活用が促進される
- > パング技術で、この役割も量子ゲームによる解析が担うことになる イメージング、 ■AIと「人」の脳を黙ぐメディアとなるのが、

公的機関でも「第四次産業革命・・・・AI化」に向けた技術創出 分析会社(日産アーク)は、これらをサービスとして提供する。 人材育成が必要条件になる

16 © 2019 NISSAN ARC, LTD.

NISSAN ARC

【依頼講演】

技術コンサルティング制度を利用したオンデマンド計測ソリューション

計量標準総合センター 研究戦略部 加藤 英幸

産業技術総合研究所(以下、産総研)は、我が国最大規模の公的研究機関であり、7つの研究領域と産学官連携の推進機能を有する総合研究所として、オープンイノベーションのプラットフォーマーの役割を強化しつつある。第4期(2015-2019年度)は、目的基礎研究を通じて生まれた技術シーズを産業界へ「橋渡し」する機能が強化され、マーケティング力の強化や連携制度の充実も併せて図られた1。

産総研の代表的な連携制度のいくつかを図 1 に示す。その位置づけの違いを定性的に示すために、エフォートとコミットメントの多寡に応じたポートフォリオとしている。第 4 期を特徴づける連携制度が冠ラボ 2 と技術コンサルティング 3 である。前者は、従来の共同研究の枠を超えた大型の連携を目指すもので、企業名を冠して現在 12 の連携研究室(ラボ)が活動中である。一方後者は、従来の連携制度の穴を埋めるような形で導入され、比較的少ないエフォートでも高いコミットメントが得られる制度設計となっている点が特徴である。

技術コンサルティングはまだ新しい制度ではあるが、産総研全体で84件(2015年度)、275件(2016年度)、411件(2017年度)と順調に件数を伸ばしている。無償の技術相談と資金提供が必要な共同研究との間には大きなギャップが存在していた。有償ではあるがコミットメントを高めた技術コンサルティング制度は、このギャップを埋める有効な制度であり、その実績からも広く産業界から求められる連携制度となっていることが実証された。

図1. 産総研の各種連携制度のポートフォリオ

本講演では、産総研の7つの研究領域の中でも最も多くの技術コンサルティングをこなしている計量標準総合センターの実績に基づき、技術コンサルティング制度を利用したオンデマンド計測ソリューションの現状について紹介する。

¹ 国立研究開発法人 産業技術総合研究所 中長期計画(認可平成 27 年 4 月) https://www.aist.go.jp/Portals/0/resource_images/aist_j/outline/middle_plan/cyuchoukikeikaku4.pdf

² 冠ラボ https://www.aist.go.jp/aist j/information/organization/kammuri lab/index.html

³ 技術コンサルティング https://unit.aist.go.jp/tmo/ja/consulting/index.html

0

JASIS 2019カンファレンス 分析計測標準研究部門第5回シンポジウム 2019.9.6

『技術コンサルティング制度』を利用した『オンデマンド計測ソリューション』

計量標準総合センター 研究戦略部

加藤英幸

N 開新印

再年可能エネルギー

福島蔣生司施工ネルギー研究所 (都山) 福格副都のセンター (お台座)

電池技術, 医療技術

バイオものづくり

北海道センター (利威)

国の研究権語

東北センター(福台)

行挙ものづくり

機能的材

(名古屋)

中部センター 解析センター

(別田)

バイオマス利用技術

中国センター(東広島)

製造プラント診断 ライフ・17融合

NIZOT

(38/80)

四国センター

九州センター (島橋)

2019/10/3

の研究形

m

地元の産業構造や技術ニーズ・シーズにマッチした研究開発をオール産総研のネットワークを活用して実施。

● 地域イノベーションに貢献するために全国に地域拠点を配置。

(→) 全国の研究拠点

米米

共同研究で一気に加速!

新たな知財が発生→共有知財化

新たな知財が発生することを 想定しています。

研究

「共同研究」は企業様と産総研が 共同で新たな技術研究をすすめる

→ | 共同研究(制度イメージ)

28

是非一度お試しください

の解析的

の無統臣

31

分析計測標準研究部門の概要

計量標準総合センター 分析計測標準研究部門 野中 秀彦

国立研究開発法人 産業技術総合研究所(産総研)は、日本の産業を支える「エネルギー・環境」、「生命工学」、「情報・人間工学」、「材料・化学」、「エレクトロニクス・製造」、「地質調査」、「計量標準」という 7 つの領域の研究開発を行う、我が国最大級の公的研究機関です。「計量標準」は 5 つのユニットからなる計量標準総合センターを母体とし、その中の1ユニットである分析計測標準研究部門は、3 つの標準グループ (Standard Group)と5 つの計測グループ (Measurement Group)が一体となって(表 1)、計量標準の開発・維持・供給と先端計測分析技術の活用により研究開発・製造の現場で生じる課題の解決を目指します。

より具体的には、標準グループは、医療用リニアックを用いた治療レベル線量標準、食品の放射能測定、環境騒音の低減に資する標準などに代表される、医療の信頼性、分析・検査産業の発展を支える放射線・放射能・中性子・音響・超音波に関連する国家計量標準の整備と普及を行います。一方、計測グループは、ナノ材料の評価等に必要な微細構造解析と製品や施設など構造物の非破壊検査のために、陽電子、X線、レーザー光やイオン、超音波などをプローブとした先端計測、評価、分析および検査技術の研究開発を行います。当研究部門は分析・検査産業等を通じて、これらの分析と計測に関する標準と先端技術を普及し、より豊かで安全な社会の構築に貢献します。

なお、当研究部門のパンフレットには、各グループの概要、研究テーマ、産業界との連携、主な装置や 計測技術、および研究部門としての活動内容が記載されていますので、そちらもご参照ください。

表 1. 分析計測標準研究部門に属する研究グループの一覧

研究グループ名	研究内容	主な応用分野
音響超音波標準研究グループ Acoustics and Ultrasonics S.G.	音響標準と超音波標準の研究開発と維持 供給、関連する精密計測技術の研究開発。	音響機器 医用超音波
放射線標準研究グループ Ionizing Radiation S.G.	放射線に関わる計量標準の開発・維持・供 給および関連する計測技術の開発。	医療用放射線
放射能中性子標準研究グループ Radioactivity and Neutron S.G.	放射能および中性子に関わる計量標準の 開発・維持・供給、および関連する計測技 術の開発。	環境放射線
X 線・陽電子計測研究グループ X-ray and Positron M.G.	X 線および陽電子をプローブとした計測 技術の研究開発。	インフラ診断 材料評価
ナノ顕微計測研究グループ Nanoscopic M.G.	電子線やイオンビーム等をプローブとしたナノ領域の計測技術の研究開発。	ナノ材料評価 構造解析
放射線イメージング計測研究 グループ Radiation Imaging M.G.	放射線をプローブとした可視化計測技術 の研究開発。	インフラ診断 材料評価
非破壊計測研究グループ Non-destructive M.G.	超音波等を用いた画像解析による非破壊 計測技術の研究開発。	インフラ診断
ナノ分光計測研究グループ Nanoscale Spectroscopic M.G.	レーザー光等を用いたナノ領域の分光計 測技術の研究開発。	光材料評価 環境計測

産総研分析計測標準研究部門シンポジウム

「新材料開発をナビゲートする計量・計測分析技術」

分析計測標準研究部門の紹介

野中 秀彦

研究部門長

hide.nonaka@aist.go.jp

技術革新を支援する計測・分析ソリューション」 分析計測標準研究部門 第5回シンポジウム 産業技術総合研究所 計量標準総合センター JASIS2019コンファレンス (2019.09.06)

「安全・安心な社会を実現するための計測標準技術」

「極限計測・分析が加速する研究開発イノベーション」 第4回 (2018)

「技術革新を支援する計測・分析ンリューション」 (2019)第5回

叶鱼模草核合センター 分析計道模準研究部門 計量標準普及センタ-校学様とメージング
学選
中代
アー 放射能中性子標準研究グループ X線・陽電子計測研究グループ 音響超音波標準研究グループ ナノ分光計道研究グループ 放射線標準研究グループ 非破壊計測研究グループ 計量標準総合センター (NMIJ) ・標準の開発・維持・供給 ・先端計測技術の開発と応用 計量標準総合センター研究戦略部 分析計測標準研究部門 物質計測標準研究部門 物理計測標準研究部門 工学計測標準研究部門

計量標準総合センター 分析計選標準研究部 計量標準総合センター(NMIJ) 地質調査総合センター(GSJ) エレクトロニクス・製造領域 エネルギー・環境領域 国立研究開発法人 産業技術総合研究所 術加戰略化職 情報·人間工学領域 材料·化学領域 生命工学領域 研究領域 岷 414 肿 빠 畑 畑 TIA推進センター 管理部門

計量模準総合センター 分析計測模準研究部門

Welcome to JASISコンファレンス

(2015)第1回

「計量標準と計測分析の融合」

第2回 (2016)

第3回 (2017)

计量模单据合センター 分析计测模单研究部户

NMU計測り

技術分野や技術テーマごとに以下の活動を実施(会員登録制)

- 研究会、講演会の開催。技術相談、共同研究。
- ・経済産業省の計量標準施策、国際計量業務活動の報告・解説。
 - ・標準量目の整備や標準供給の準備状況、将来に向けた物理量 化学物質の標準予測の意見交換の場
- 現在20以上のクラブが活動中(NMIJホームページで公開中)
- ・<u>超音波音場計測クラブ</u>:数十ktz~数十Mtz帯の水中超音波の音圧、パワー、インテンシティ、音場プロファイル、キャビテーション発生量等の精密計測技術や不確かさ評価方法、超音波計測に関連する規格の現状。 超音波音場計測クラブ
- ・<u>放射線・放射能・中性子クラブ</u>:放射線、放射能、中性子関連量に関する標準開発や計測技術開発への要望、JCSS・JIS・JSO・FECに対する要望。
- な量子ビーム源、それらを用いた材料分析および非破壊計測、並びに製品評価技術。 :中性子、x線・ガンマ線、陽電子線などの先端的 ・量子ビーム計測クラブ

計量模學都合センター 分析計強模學研究部 分析計測標準研究部門 計量標準総合センタ

١

11 * 放射能中性子標準研究グループ X線・陽電子計測研究グループ X線・陽電子計選母的グループ 音響超音波標準研究グループ 枚名様ゲージン 計選除的グループ 放射線パージング計測研究グループ ナノ公光中選甲的グループ ナノ顕微計測研究グルーブ 放射線標準研究グループ 非破壊計測研究グループ 非破壊計測研究グループ 超音波・モアレ 放射能・中性子 工学・物理・物質 光吸収・反射・干渉 口被型×線源 後方散乱X線 **円偏光・**THZ ナノ構造・標準 十/控孔 超高温物性 放射線 押 不確かさを知りたい 構造・材料の欠陥 や変形を測りたい インパックムで講演 正確に測りたい 特性を測りたい 物質や材料の 産総研

テーマ

「技術革新を支援する計測・分析ソリューション」

スマート社会に向けた量子ビーム解析への期待 と分析会社の責務 【依頼講演

様(株式会社日産アーク) 松木降

- 「構造材料分析のための中性子ビーム施設と活用」木野
- 「中性子標準を基盤とした半導体ソフトエラー評価のための計測技術」 松本

-0004

哲郎

- 「時間分解レーザー分光による光機能材料評価」松崎 弘幸
- 直昭 「先端分析計測機器群による新材料開発支援プラットフォーム」 齋藤

加藤 英幸 (計量標準総合センター研究戦略部) 【依頼講演 I】技術コンサルティング制度を利用 | オンデマンド計測ソリューション

- 「放射線計測機器の性能試験・評価」加藤 昌弘
- 「超音波利用機器の性能・安全性評価技術の開発」吉岡 正裕 「デジタルホログラフィを用いた高精度面外変位計測」夏 鵬 「短パルスレーザーによる加工技術の産業応用」田中 真人
- 「ナノ粒子サイズ分布計測における原子間力顕微鏡の役割」重藤 -600000

知夫

構造材料分析のための中性子ビーム施設と活用

X 線・陽電子計測研究グループ 木野 幸ー 1 、大島 永康 1,3 、オローク ブライアン 1,3 、加藤 英俊 1,3 、満汐 孝治 1,3 、鈴木 良ー 1 、林崎 規託 1,2 、友田 陽 1 、古坂 道弘 1 放射線イメージング計測研究グループ 小川 博嗣 1,3 、田中 真人 1,3 、藤原 健 1 、

佐藤 大輔 ¹、清 紀弘 ¹、豊川 弘之 ^{1,3}、黒田 隆之助 ^{1,3} 構造材料研究部門 軽量金属設計グループ 渡津 章 ¹ 株式会社日産アーク 伊藤 孝憲 ¹、今井 英人 ¹、松本 隆 ¹ 新構造材料技術研究組合 ¹ 宍戸 玉緒、室賀 岳海 東京工業大学 ²、 先端オペランド計測技術 OIL³

要旨

我々は、自動車等の輸送機器の主要構造材料の非破壊分析のために、小型加速器中性子施設の構築・試験を進めている。この施設は、パルス中性子ビームによる波長分解型イメージングに最適化されており、現在鋭意調整中である。これと同時に、この分析手法を用いた本施設での利用対象物のイメージング研究を、既存中性子施設を用いて進めている。アルミニウム板の摩擦撹拌点接合試料を分析した結果、母材と撹拌領域で異なる結晶配向イメージが得られた。

1. はじめに

現在、省エネルギー社会の実現が求められており、排ガス規制が厳しくなってきて いる。これを解決するための手段の一つが自動車などの輸送機器の軽量化であり、さ らに日本の国際競争力向上のためには、この軽量化を推進する必要がある。軽量化の 手法としては、材料開発の他にマルチマテリアル化がある。マルチマテリアル化とは 適材適所に様々な材料(高張力鋼、アルミニウム、CFRP など)を用いるものである が、この実現には異種材料の接合技術が重要である。実用化には接合試験試料の研究 だけでなく、組みつけた状態での非破壊分析が必要である。この非破壊分析には、我々 は物質透過力の高い中性子ビームが有効で、特にパルス中性子ビームによる波長分解 型イメージングが効果的であると考えている。このイメージング手法は、パルス中性 子源から一定時間周期で発せられる白色中性子を測定試料に照射し、透過した中性子 を2次元中性子検出器で検出するもので、個々の中性子毎に中性子源から検出器まで の中性子の飛行時間、すなわち中性子波長が記録される。測定試料が結晶性のもので あれば、中性子波長スペクトルに、結晶での中性子回折が現れる。この回折情報を 2 次元中性子検出器で得られる個々の中性子の試料透過位置毎に分析すれば、試料の結 **晶ミクロ情報のイメージングができる。画像情報として得られるので、中性子分析の** 専門家でない産業界の方々にも容易に理解できる。我々は、この分析手法と柔軟な運 用が可能な小型加速器中性子施設との組み合わせによる産業利用への相乗効果を目指 している。現在、小型加速器中性子施設の構築・試験を産総研内にて進めている。^{1,2} また並行して、本施設での利用対象物のイメージング研究を、既存中性子施設を用いて進めている。本報告集では、小型加速器中性子施設と既存中性子他施設を用いたイメージング研究の最新状況を報告する。

2. 小型加速器中性子施設

本施設の全体像を図1に示す。主に、電子加速器、中性子源、中性子ビームライン で構成される。構造材料分析に求められる高い中性子波長分解能と産業利用に有効な 計測時間を両立するため、複数の最適化を施してある。電子加速器では、電子ビーム のパワーが日本の小型電子加速器中性子源用としては最大の 10 kW を目標にしてお り、パルス幅は 10 μs (最大)、繰り返しは 100 Hz(最大)に最適化されている。中性子 源では、中性子減速材に非結合型の固体メタンを採用している。これにより時間幅の 狭い中性子パルスを供給することで、飛行時間法で計測する中性子波長の高分解能を 実現する。中性子ビームラインでは、中性子を効率よく輸送するためにスーパーミラ ーガイド管を採用し、また、2次元中性子検出器では高中性子検出効率で高中性子計 数率を両立する GEM(Gas Electron Multiplier)タイプの検出器を採用することで、効率 的な計測時間を実現する。また、以上の最適化により得られるパルス中性子ビームの 特性を、モンテカルロシミュレーションにより予測してある。2さらに、中性子源と中 性子ビームラインでは、中性子ビームシャッターとビームラインハッチを設けること で、ユーザーの測定利便性を向上させている。ビームシャッターを閉じることでユー ザーは扉1つで隔てられたビームラインハッチに入室できるため、測定時のセットア ップなどが効率的に行える。シャッターと扉の開錠・施錠操作の方法は、J-PARC 物 質・生命科学実験施設の中性子ビームラインと類似しており、中性子ユーザーは本施 設と J-PARC を行き来して計測するのに難しさを感じにくい工夫がされている。

図 1. 小型加速器中性子施設全体図

3. 他施設での摩擦撹拌点接合試料の分析

構造材料の接合方法としては、スポット溶接、ボルト接合、接着などがあり、近年使用が増えてきたものとして、摩擦撹拌接合がある。これは、回転する接合ツールを圧力をかけながら接合材料に押し当て、接合材料をその融点以下で塑性流動させることにより接合するものである。我々は、いくつかの接合方法の試料を、既存他施設である J-PARC 物質・生命科学実験施設の RADEN ビームラインにて計測し、分析手法の開発を同時に行ってきている。今回、3 mm 厚さのアルミニウム板を 2 枚重ねたものを摩擦撹拌点接合した試料の分析結果を紹介する。

図 2 に分析の概念を示す。中性子ビームを ND 方向に並行に照射した。2 枚のアルミニウム板には、摩擦撹拌点接合の接合ツールのピン部分により凹んだ部分(破線で示した凹み、直径 10 mm)とその外側にドーナツ状に広がる塑性流動部(濃い色で示したリング状部分、直径 20 mm)、その外側に母材のままの領域がある。母材と塑性流動部を含んだ領域では、図 2 の左側に示す中性子透過率スペクトルとなった。200 反射が強く、111 反射は抑制されている。理論関数でフィットしたところ、中性子ビームと垂直方向に<100>方位ベクトルが向いているとした場合に、最もよくスペクトルが再現できた。本分析手法では、中性子ビーム方向に対して軸対象を前提としており、方位ベクトルが RD,TD どちらに向いているかは判別できない。一方、ピン凹み部では、111 反射が強い中性子透過率スペクトルが得られた。中性子ビーム方向(ND)に<111>方位ベクトルが向いているとした場合に、最も理論関数でよく再現できた。このように、試料の場所によって結晶の配向が大きく違っていることが分かった。

このようなスペクトル分析を 0.8 mm×0.8 mm ピクセル毎に行った結果を図 3 に示

図 2. 分析の概念図

す。16mm×24.8 mm の領域において、<100>と<111>方位ベクトルでのフィッティング 両方を行い、測定透過率スペクトルとフィットした理論関数の残差が小さい方の結果 を各ピクセルで採択した。この結果<100>、<111>でのフィットが良好な結果を図3のそ

れぞれ左側と右側に、試料の写真と重ね合わせて示す。<100>が優勢なピクセルは、写真の塑性流動部と母材部によく一致した。図の Z 軸である R 値は、1 で結晶配向が等方、R が 1 から離れるにつれて配向が強くなることを示す。塑性流動部と母材部では配向度合いが明瞭に異なり、塑性流動部では配向性が母材に比べ弱まっていることがわかる。<111>が優勢なピクセルは、写真のピン凹み部とよく一致した。この中でも、凹み部の外周付近では配向性がやや等方に近くなっている。以上のように、結晶配向に関するイメージングに成功した。また、同じ母材で同じ接合方法を用いた 3 つの試料の結果を比較したところ、塑性流動部での配向性度合い分布に違いが見られた。接合の健全性と結びつけられる可能性も考えられる。

4. まとめ

図3. 結晶配向の度合いのイメージング結果

現在、構造材料の非破壊分析を目指して、産総研設置の小型加速器中性子装置の構築・試験を進めていると同時に、既存中性子施設を用いての接合試料の計測・データ解析が進められている。装置構築と分析手法の両面で着実に進捗しており、今後の本格利用が期待される。

謝辞:この成果は、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託事業革新的新構造材料等研究開発の結果により得られたものです。J-PARC・MLF・BL22における測定(課題番号 2018A0157)は、JAEA 篠原武尚氏にご協力いただきました。

¹産総研ニュース"構造材料開発の高度化を加速する小型加速器中性子施設の構築に着手" http://www.aist.go.jp/aist_j/news/au20170801.html

² K.Kino et al., Nuclear Inst. and Methods in Physics Research, A 927 (2019) 407–418.

構造材料分析のための中性子ビーム施設と活用

木野 幸一13, 大島 永康136, 小川 博嗣236, オロークブライアン136, 加藤 英俊13, 黒田 隆之助236, 林崎 規託134 藤原 億23, 古坂 道弘13, 瀬汐 孝治13, 室賀 岳海3, 張浄 章36, 伊藤 孝憲37, 佐藤 大輔29, 宍戸 玉緒3, 鈴木 良一1.9, 清 紀弘29, 田中 真人236, 豊川 弘之236, 友田 陽1.3, 今井 英人37, 松本 隆37

産業技術総合研究所 X線・陽電子計測研究グループ, 2放射線イメージング計測研究グループ,

3新構造材料技術研究組合, 4東京工業大学,

6産業技術総合研究所 構造材料研究部門軽量金属設計グループ ○産業技術総合研究所 先端オペランド計測技術OIL

ANST ISMA

JASIS2019 木野幸一 2019年9月6日

省エネルギー社会の実現(排ガス規制)

3/13

引用:ISMA HP http://isma.jp/en/works/ Trunk lid: Al or CFRP 日本の国際競争力向上 自動車のマルチマテリアル化の例:接合技術の向上のためには分析が必要 Roof: Al or CFRP 自動車などの輸送機器の軽量化 Side collision part: UHTSS Floor panel: Al or CFRP Front collision part :: UHTSS (Ultra high tensile strength steel) Cowl : Al

発表内容

2/13

1.産総研設置小型加速器中性子装置

目的、プロジェクト

全体構造、特徴、状況

2.構造材料非破壊分析の紹介

摩擦撹拌接合試料を例に

3.まとめと今後の展開

ANST ISMA

JASIS2019 木野幸一 2019年9月6日

背景(プロジェクト)

4/13

NEDO

国立研究開発法人新エネルギー·産業技術総合開発機構 NEDO (New Energy and Industrial Technology Development Organization) 委託

ISMA (Innovative Structural Materials Association) ・メンバー: 38 企業, 2 国研, 1 大学 (2018年4月1日) 新構造材料技術研究組合

構造材料の非破壊分析のためのコンパクト加速器中性子装置の **AIST** 產業技術総合研究所

構築とその活用などを推進

ANSI ISMA

では、中性子はどうしたらこのような日本の産業界に貢献できるか?

JASIS2019 木野幸一 2019年9月6日

AMST ISMA

JASIS2019 木野幸一 2019年9月6日

波長分解型透過イメージングに特化

5/13

・中性子分析のプロでない産業界の方々にも有用な分析手法は? ・中性子の高い物質透過力を活かせる分析手法は?

飛行時間法で個々の中性子のエネルギー(波長)を分析 2次元検出器のピクセルごとに回折現象を分析

試料のミクロ情報をマクロな2次元画像として得られる。

ANST ISMA

JASIS2019 木野幸一 2019年9月6日

7/13 産総研設置中性子ビーム施設

中性子ピームライン -現在鋭意調整 国内の電子加速器中性子装置としては最大強度! 中性子源 ~20m ピークカレント 275 mA (Max.) 加速管長 3m×3段 電子加速器 ピームパワー 10 kW (Max. Sバンド(2.8GHz) 加速エネルギー 35 MeV 繰り返し 100 Hz (Max.) /パルス幅=10 μ s

波長分解型透過イメージング先行研究事例が

大型・小型中性子源での先行研究例

小型中性子装置の利用・運用のしやすさ

構造材料非破壊分析

波長分解型中性子透過イメージング の情報ポテンシャル

ANST ISMA

JASIS2019 木野幸一 2019年9月6日

自動車に使われる接合技術

8/13

製造をシントン展

マルチマテリアル化を実現するために、高強度ハイテン部同士、僻板/軽金属 金属/樹脂などをつなぐ接合技術(点接合・連ば重合 既抗スポット治職

摩擦照推接合 レーナ治核 7-7治陵

の 本数な、長寿のシールによる場項を対の企業で用金・金配金を対の組織を 関係等例 の 放配性的制による中央は新版の場 "既存他施設"にて計測した。 ▲A 分析の状況を紹介する。

ALIST ISMA

JASIS2019 木野幸一 2019年9月6日

AMST ISMA

JASIS2019 木野幸一 2019年9月6日

32

赤の理論関数フィットには RITSコードを使用

JASIS2019 木野幸一 2019年9月6日

中性子ピーム方向に〈111〉が 向いている傾向が強いことが判明

中性子飛行時間(ps) 黒:測定データ 赤:理論関数でフィット

中 イニン

10/13

ピン 国 み 部 の 値 填

測定透過率データ

まとめ、今後の展開

13/13

- 自動車などの構造材料の非破壊分析を目指したコンパクト加速器 駆動中性子装置を産総研内に構築し、調整を進めている。 既存他施設を利用して、構造材料の分析実証としてマルチマテリア ルを対象に測定、分析を進めている。
 - 今後は、産総研設置装置の本格稼働、それを活用した構造材料の非破壊分析を通して、日本の自動車産業などの競争力強化を推し進める。 ※※※中株子格出器

製器、2の成果は、国立研究開発法人第114/14年・産業技術総合開発機構(NEOO)の感託毒業 革管的所構造材料等研究開発の 種類に120得込行た60でも、過ぎ一分は、JPARC・MLF・BL2Zでの実験(課題番号2018A0157)により得られたものであり、実験には JAFA機原式的にご切りがだきました。

AMST ISMA

JASIS2019 木野幸一 2019年9月6日

Research Institute for Measurement and Analytical Instrumentation

構造材料分析のための中性子ビーム施設と活用

○木野 幸一^{1,3}, 大島 永康^{1,3,5}, 小川 博嗣^{2,3,5}, オローク ブライアン^{1,3,5}, 加藤 英俊^{1,3}, 黒田 隆之助^{2,3,5}, 佐藤 大輔^{2,3}, 宍戸 玉緒³, 鈴木 良一^{1,3}, 清 紀弘^{2,3}, 田中 真人^{2,3,5}, 豊川 弘之^{2,3,5}, 友田 陽^{1,3}, 林崎 規託^{1,3,4}, 藤原 健^{2,3},

古坂 道弘1.3, 満汐 孝治1.3, 室賀 岳海3, 渡津 章3.6, 伊藤 孝憲3.7, 今井 英人3.7, 松本 隆3.7

- ・「産業技術総合研究所 X線・陽電子計測研究グループ、2放射線イメージング計測研究グループ、3新構造材料技術研究組合、
- "東京工業大学、5産業技術総合研究所 先端オペランド計測技術OIL、6産業技術総合研究所 構造材料研究部門軽量金属設計グループ、7日産アーク

1. 研究・開発の背景

自動車等の主要構造材料に用いられる金属等のマルチマテリアル化による軽量化開発等において、 試料単体あるいは組みつけた状態での非破壊分析のために、小型加速器中性子施設の構築・調整を進めている^{1,2}。我々はこの非破壊分析に、パルス中性子ビームによる波長分解型透過イメージングが有用であると考えている。この分析手法と、柔軟な運用が可能な小型加速器中性子施設との組み合わせによる産業利用への相乗効果を目指している。

2. 研究・開発(小型加速器中性子施設)

図1に示す、電子加速器、中性子源、中性子ビームラインで構成される産総研設置の小型加速器中性子施設の構築、調整を行っている。この装置は、波長分解型透過イメージングに最適化されている。2019年度中のファーストビームを目指している。

図1. 構築、調整中の小型加速器中性子施設の概要。

3. 研究・開発(他施設での接合試料分析)

他施設での各種金属、接合方法での接合試料の波長分解型透過イメージング実験、分析を進めている。図2、3に摩擦撹拌点接合試料の結果を示す。接合による配向性の変化が画像化できた。さらに、試料による配向度合いの分布の違いも見えた。今後健全性や疲労評価への展開を計る。

4. 結論および今後の展開

今後は、産総研設置装置の本格稼働、それを活用した構造材料の非破壊分析を通して、日本の 自動車産業などの競争力強化を推し進める。

謝辞:この成果は、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託事業革新的新構造材料等研究開発の結果により得られたものです。 J-PARC・MLF・BL22における測定(課題番号2018A0157)は、JAEA篠原武尚氏にご協力いただきました。

「産総研ニュース"構造材料開発の高度化を加速する小型加速器中性子施設の構築に着手" http://www.aist.go.jp/aist.j/news/au20170801.html

² K.Kino *et al.*, Nuclear Inst. and Methods in Physics Research, A 927 (2019) 407–418.

URL:https://unit.aist.go.jp/rima/

中性子標準を基盤とした半導体ソフトエラー評価のための計測技術

放射能中性子標準グループ 松本 哲郎、増田 明彦、原野 英樹

要旨

我々の生活の中で半導体製品が必要不可欠となっている中、中性子誘起半導体ソフトエラーが注目されている。半導体ソフトエラーに関する研究、評価において利用可能な中性子標準の技術を紹介した。

1. はじめに

放射能中性子標準研究グループでは、熱中性子~45 MeV の 9 桁にわたるエネルギー領域で、中性子の正確な量を測定する計測技術を開発し、中性子フルエンスや中性子線量を与える国家標準を供給してきた。これらは、主に原子力施設や放射線施設における安全管理、放射線防護のための中性子線量計の校正に利用されている。90 年代に入り、パソコンや PLC (プログラマブル・ロジック・コントローラ) など半導体機器の利用が急速に拡大されてきた社会背景の中で、放射線によるシングルイベントアップセット (SEU) と言われるソフトエラーの現象が注目されるようになった。その中でも、地上の通常の環境で使用されている機器のエラーについては、中性子誘起エラ

一の影響が大きいと考えられている。また、放射線治療に利用される加速器で 2 次的に発生される中性子など特殊な環境も考えられる。本発表では、半導体ソフトエラーの評価に関する中性子標準を基盤とした技術について紹介する。

2. 中性子誘起半導体ソフトエラー

ソフトエラーの一つである SEU とは、半導体内で生成または外部から入射した電気的性質を持つ荷電粒子により、半導体内で微弱電流が発生し、記憶されている情報が反転 (0 と 1 が入れ替わる) する現象である。

表 1. シリコンと中性子 によって荷電粒子が生成 する反応の例とそのしき いエネルギー

²⁸ Si+n→	2.7MeV
²⁹ Si+n→p	3.0MeV
²⁹ Si+n→	35keV
³⁰ Si+n→p	8.0MeV
³⁰ Si+n→	4.3MeV

図1. 中性子起因でソフトエラーが起きる3パターン

中性子起因で半導体内を荷電粒子が通過する過程は、いくつか考えられる。そのうちの主なものと考えられる3つを紹介する(図1)。1つめは、中性子が入射すると、シリコンと中性子による反応により、多くの場合、中性子エネルギー4 MeV 近傍からヘリウムイオンや陽子といった荷電粒子が発生する反応が起き始める。表1に、核反応の例とそれらのしきいエネルギーを列挙した。より高い数10 MeV 領域以上ではより多くの荷電粒子生成反応が起こる。2つめは、半導体内に微量のホウ素が含有している場合、低いエネルギーを持った中性子とホウ素との原子核反応(10B(n,)7Li)によりヘリウムイオンが発生する。3つめは、半導体には製品化される際、カバーがされている。このカバーには水素が含まれるプラスチックのような材料の場合が多い。カバー材料に含まれる水素と中性子との反応によって生成される反跳陽子が半導体に入射するということも考えられる。この場合、中性子のエネルギーは1 MeV 程度以上で起こりうる。このように、さまざまなエネルギーの中性子がソフトエラーの要因になりうる。

3. 中性子の飛来

高いエネルギーの中性子は、宇宙から飛来する高エネルギー荷電粒子に起因して、我々の生活環境にも存在する。太陽やそのほかの宇宙から飛来する高エネルギー粒子は、地球の大気層に入ると、大気中の窒素や酸素の原子核と反応し、様々なエネルギーの中性子が生成される。多くの中性子は、空気によって遮蔽されるが、一部が地上にまで到達する。そのエネルギー分布は、熱中性子、1 MeV 近傍、数 10 MeV~100 MeV の 3 つのピークを持つエネルギー分布であることが観察されている。中性子量は、太陽活動などによって異なる。また、地上の高度などによっても変化する。

特殊な環境としては、放射線治療や研究・産業用の大型加速器施設において2次的に中性子が発生する場所がある。

4. 中性子標準を基盤とした計測技術

当グループでは、ソフトエラーに関していくつかの中性子計測技術を提供することができる。 1 つめは、ソフトエラーとみられる現象が起きたときに、それが中性子によるものか、どのような特性の中性子によるものか、を検証するために中性子照射試験を提供できる。中性子照射として、 241 Am-Be 線源、 252 Cf 線源、重水減速 252 Cf 線源、 241 Cf 線源、 252 Cf 線源、 252 Cf 線源、 252 Cf 線源、 252 Cf 線源、 24 keV 241 C が可能である。特に、これらの照射量を、不確かさを付けて正確に提供できることが特徴である。さらに、 24 keV 215 MeV については、 4 MV ペレトロン加速器及び 300 kV コ

図 2. Thick Radiator 検出器

図 3. 反跳陽子比例計数管

図 4. 45 MeV 標準場の中性子エネルギー分布

図 5. 反跳陽子検出器

ッククロフト加速器を用いて、エネルギー幅の小さい単色性の良い中性子を生成できるため、エネルギー依存性などを評価するために適している。当グループでは、中性子フルエンス(単位面積当たりを通過する中性子数(単位: cm^2))を正確に測定する技術開発を継続的に進めている。水素の中性子弾性散乱反応を利用した Thick Radiator 検出器(図 2)や反跳陽子比例計数管(図 3)、 3 He 比例計数管、随伴粒子検出装置などを用いて導出されている。また、外国の標準研究所との国際比較 6 を通じて信頼性の評価もされていることが大きな特徴である。最初に中性子起因のソフトエラーの現象か否かを確認するために、 1 5 MeV の照射をされる方が多い。45 MeV 高エネルギー中性子フルエンス率標準は、量子科学技術研究開発機構高崎量子応用研究所のイオン照射施設(TIARA)にある AVF サイクロトロンを用いて構築された。中性子は、 7 Li(p,n) 7 Be 反応によって生成され、サイクロトロンによって加速された 5 0 MeV 陽子を、金属リチウムに入射して得られる。中性子エネルギー分布は、液体シンチレータ(BC501A)及び 6 Li ガラスシンチレータを用いた中性子飛行時間法とボナー球スペクトロメータ(BSS)によるアンフォールルディング法の合わせ技によって測定された。図 4 に示すように 4 5 MeV にピークを持つ準単色中性子である。中性子フルエンスは、Si 検出器と液体シンチレータを組み合わせた反跳陽子検出器(図 5 0 によって決定された。

2 つめとして、ソフトエラーの現場や産総研外の照射場において、中性子特性を計測することが可能である。測定には、主にボナー球スペクトロメータ(BSS)を使用する。BSS は、複数の大きさのポリエチレン球と ³He 比例計数管を組み合わせたものであり、熱中性子~数 10 GeVの中性子エネルギー分布を導出できる。BSS は、中性子標準場で校正され、中性子量 (線量)も評価できるため、様々な目的に利用されている ^{7,8}。場合によっては、1 MeV 以上の中性子を測定できる液体シンチレータによる計測と組み合わせて、中性子に関する情報を導出することが可能である。

5. まとめ

放射能中性子標準研究グループでは、これまで放射線防護に関連して中性子標準の開発を行ってきた。2000年以降半導体のソフトエラーの現象に対する注目が高まり、その中での中性子誘起半導体ソフトエラーの試験に関わる線量評価において利用可能な、中性子標準を基盤とする計測技術について紹介した。

- ¹ H. Harano et al., Monoenergetic and Quasi-Monoenergetic Neutron Reference Fields in Japan, Radiat. Meas. **45**, 1076 (2010).
- ² T. Matsumoto et al, Novel generation method of 24-keV monoenergetic neutrons using accelerators, AIP Conf. Proc. 1099 924 (2009).
- 3 T. Shimoyama et al., Development of the fast neutron fluence standard using a Be(α ,n) reaction at the National Metrology Institute of Japan, Radiat. Prot. Dosim., 126(1-4), 130(2007)
- ⁴ A. Masuda et al., Development of a neutron standard field using a heavy-water moderated ²⁵²Cf source at NMIJ-AIST, Prog. Nucl. Sci. Technol. 4, 400-403 (2014).
- ⁵ T. Matsumoto et al., Development of the high-energy neutron fluence rate standard field in Japan with a peak energy of 45 MeV using the Li-7(p,n)Be-7 reaction at TIARA, J. Nucl. Sci. Technol. **54(5)**, 529 (2017).
- ⁶ V. Gressier et al, International key comparison of neutron fluence measurements in monoenergetic neutron fields: CCRI(III)-K11, Metrologia 51, 06009 (2014).
- ⁷ T. Matsumoto et al, EPJ Conf. **153**, 08016 (2017).
- ⁸ T. Matsumoto et al., Measurement of neutron energy spectra behind shields for quasi-monoenergetic neutrons generated 246-MeV and 389-MeV protons using a Bonner sphere spectrometer, Prog. Nucl. Sci. Technol. 4, 332 (2014).

JASIS2019@幕張メッセ(2019.9.6)

中性子標準を基盤とした半導をフトエラー評価のための計測技

産業技術総合研究所 分析計測標準研究部門放射能中性子標準研究グループ

松本哲郎

ZAIST

半導体を使った製品が多く国内で生産、利用されている。

・工場、プラントの制御機器・通信装置

半導体内で生成または外部から入射した電気的性質を持 つ荷電粒子により、半導体内で微弱電流が発生し、記憶されている情報が反転(0と1が入れ替わる)現象

〇産総研中性子標準場の利用 ソフトエラー現象を確かめるための試験 (中性子によるものか、など)

半導体ソフトエラー

ZAIST

半導体を使った製品が多く国内で生産、利用されている。

・工場、プラントの制御機器・通信装置

半導体内で生成または外部から入射した電気的性質を持つ荷電粒子により、半導体内で微弱電流が発生し、記憶されている情報が反転(0と1が入れ替わる)現象

中性子起因でこの現象が起きる

・ハードは壊れない。再起動や上書きによって正常動作に戻る。 ・ハードウェアの故障率よりも大きくなると、、、

産総研中性子の利用

産総研中性子標準

15/17

装置を置いてある環境の中性子エネルギー分布、中性子量の評価

〇環境中、外部試験場の中性子量評価

産総研外施設での試験の際の中性子線量評価

中性子検出器の感度(応答関数)を校正→山の上などでの測定に利用

〇産総研中性子標準場の利用

中性子標準を基盤とした計測

ソフトエラー現象を確かめるための試験

(中性子によるものか、など)

〇産総研中性子標準場の利用

ボナー球スペクトロメータの校正 AAIST

フィールド試験における線 量評価に使用する検出器 の応答測定 →ボナー球スペクトロメータ (多球減速材付き中性子 検出器)

外部実験

MAIST

大阪大学RCNP中性子源

100-400MeV

液体シンチレータとボナー球による中性子 場の線量評価 (原子力機構、KEK、京大、阪大と共同) 海外の研究Grによる半導体照射

CERN-CHARM

(KEK、京大、九大、広大、清水建設と共同) 24GeV n + Cu

様々な半導体装置の試 験が行われている

まとめ

AAIST

・半導体ソフトエラーの簡単な説明 ・産総研中性子標準場の紹介

・ボナー球スペクトロメータを用いた実験例の紹介

t-matsumoto@aist.go.jp neutron-ml@aist.go.jp ご相談ください 中性子の照射 中性子の測定 中性子の校正

https://unit.aist.go.jp/rima/ract-neu/neutron/newhp.html HP(「中性子標準」で検索)

時間分解レーザー分光法による光機能材料評価 ナノ分光計測研究グループ 松﨑 弘幸

要旨

太陽電池、発光材料、光触媒半導体材料などの光機能性材料・デバイスでは、電子・正孔や励起子、イオンの運動によって光電変換、電荷再結合発光、酸化還元などの重要な機能が発現する。このような動的な過程を、超短パルスレーザー光による時間分解分光計測技術を開発・駆使して計測し、動作機構・反応機構の解明を行なっている。独自開発したナノ秒あるいはフェムト秒の時間分解能を有する過渡吸収分光装置を始めとした各種時間分解レーザー分光装置を、産総研共用施設等利用制度を通じて外部公開を行っている。本講演では、これらを活用した具体的な適用・応用事例について、シリコン太陽電池モジュール、光触媒半導体材料、有機電界発光素子を例に挙げて紹介するとともに、現在開発中の顕微過渡吸収イメージング分光装置について紹介した。

1. はじめに

光機能性材料・デバイスの高性能化や信頼性向上を図る上で、光物理、光化学過程のダイナミクスを精密に計測・解析することは極めて重要である。時間分解レーザー分光法は、超短パルスレーザー光照射によって瞬間的に生じる光励起状態の生成・消滅過程を高い時間分解能で追跡する分光手法であり、材料・デバイス中で起こる動的過程を実時間で観測し、その動作機構・反応機構を解明する上で、極めて有効な計測手法である。我々は、これまでに、サブピコ秒からミリ秒領域までの幅広い時間領域で、過渡吸収(または正反射、拡散反射)/発光スペクトル及び時間変化を、紫外から中赤外域の広波長領域で高感度に測定可能な時間分解分光システムを独自に開発・整備し、各種機能材料への適用を進めている。また、過渡吸収分光装置群(フェムト秒、ナノ秒過渡吸収分光装置)と時間分解発光分光装置群(ピコ秒発光寿命計測装置、ナノ秒発光寿命計測装置)を産総研共用施設等利用制度(https://unit.aist.go.jp/rima/nanotech/index.html)を通じて外部に利用公開している。さらに、微小または空間的に不均一な複合材料・デバイスにおける計測や励起状態の拡散・伝播等の時空間ダイナミクスの計測を可能とするため、空間分解能を付与した顕微過渡吸収イメージング分光装置の開発を進めている。以下では、これら装置を活用した具体的な適用例と開発中の顕微過渡吸収イメージング分光装置について説明する。

2. 適用例

○可視光分解光触媒 Ta_3N_5 における光生成キャリアダイナミクス解析 1

太陽光エネルギーを利用して、光触媒によって、水を水素と酸素に分解できれば、クリーンかつサステナブルな再生可能エネルギーを作り出すことができる。しかし、これまでに開発されてきた光分解可能な酸化チタンなどの光触媒材料は、その大半が紫外光しか利用できず、現在、太陽光エネルギーを高い効率で利用するために、可視光を含むより長波

長の光を利用できる材料の開発が世界中で進められている。その中で、 Ta_3N_5 は、そのエネルギーバンド構造から、水の可視光全分解(水を水素と酸素に同時に分解)が期待される材料である。 Ta_3N_5 はこれまで主に Ta_2O_5 や Ta 金属を出発物質として、これを窒化処理することで合成されており、このような方法で得られた Ta_3N_5 を光電極に用いた場合には、犠牲試薬存在下や電圧印加下で、酸素発生と水素発生がそれぞれ独立に生じることが報告されてきた。最近、 $KTaO_3$ を出発物質として合成した Ta_3N_5 を光電極に用いた場合には、犠牲試薬や印加電圧を用いずに、水の全分解が可能であることが見出された(Z. Wang $et\ al.$, Nature Catalysis 1,756–763 (2018))。特に、窒化時間が 0.25 時間(15 分間)の場合に、最も水分解効率が高く、これ以上の窒化時間では、分解効率は急激に低下し、10 時間の窒化時間では 0.25 時間の 1/5 程度になることが報告されている。この現象の起源を明らかにするために、 Ta_3N_5 において過渡分光測定を行った。

図 1 は、KTaO₃を出発物質として 0.25 時間窒化処理して合成した Ta_3N_5 粉末試料 (Ta_3N_5 /KTaO₃、図左)と従来法で Ta_2O_5 を出発物質として窒化処理して合成した Ta_3N_5 粉末試料 (Ta_3N_5 /Ta₂O₅、図右)における、励起光 440 nm、検出光 3435 nm での過渡拡散反射の時間変化である。いずれの試料も助触媒は非担持である。この検出光波長では、光生成した自由電子を観測している。光励起後 5 ps までの時間において、キャリアの減衰挙動は、 Ta_3N_5 /KTaO₃ 試料では励起光強度に大きく依存するのに対して、 Ta_3N_5 /Ta₂O₅ 試料では、ほぼ励起光強度に依存しない。キャリア減衰の時間変化の理論的な解析から、 Ta_3N_5 /KTaO₃ 試料では、光励起後、5 ps までの時間内で、光生成した電子の大部分が自由電子として正孔と直接再結合(2 分子再結合)していることが分かった。一方で、従来法で合成した Ta_3N_5 / Ta_2O_5 試料では、電子と正孔の直接再結合では、キャリア減衰の時間変化は再現できず、光生成した自由電子は、主に Ta 原子に由来する電子トラップサイトに捕獲され減衰していると考えられる。

図 1. 励起光 440 nm、自由電子に帰属される検出光 3435 nm での、 $KTaO_3$ から合成した Ta_3N_5 粉末試料(0.25 時間窒化処理、 Ta_3N_5 / $KTaO_3$ 、左)と Ta_2O_5 から合成した Ta_3N_5 粉末試料(Ta_3N_5 / Ta_2O_5 、右)における過渡拡散反射の時間変化

一方、光生成した価電子帯の正孔の挙動を調べるために、Ta₃N₅のバンド間遷移吸収帯を

含む可視・近赤外領域で過渡拡散反射の測定を行った。図 2 は、 $Ta_3N_5/KTaO_3$ 粉末試料 (0.25 時間窒化処理、図左)と Ta_3N_5/Ta_2O_5 粉末試料 (図右)における過渡吸収スペクトルの時間変化 (励起光 440 nm) である。いずれの試料も助触媒は非担持である。両者において共通して観測される 545 nm 付近の負符号の信号は、光励起による Ta_3N_5 のバンド間遷移吸収強度の減少(プリーチング)に起因するものである。 Ta_3N_5/Ta_2O_5 試料では、この信号に加えて、バンド間遷移の吸収端 590 nm 付近にプリーチング信号が観測され、200 ps でもほぼ減衰せず、減衰時間は長い。この 590 nm 付近のブリーチング信号は、光生成した正孔が N原子に由来する正孔トラップサイトに高速に捕獲されることにより、正孔トラップサイトから伝導帯への電子遷移強度が減少したためであると考えられる。一方、 $Ta_3N_5/KTaO_3$ 試料では、図から分かるように 590 nm 付近のブリーチング信号は観測されておらず、これは正孔トラップサイトの濃度が十分小さくトラップサイトへの正孔の捕獲確率は小さいことを示唆している。

図 2. 励起光 440 nm での、 $Ta_3N_5/KTaO_3$ 粉末試料(0.25 時間窒化処理、左)と Ta_3N_5/Ta_2O_5 粉末試料(右)における過渡吸収スペクトルの時間変化

図 3. 励起光 440 nm、自由電子に帰属される検出光 3435nm での、Ta₃N₅/KTaO₃ 粉末試料 (10 時間窒化処理、左) における過渡拡散反射の時間変化と過渡吸収スペクトルの時間変化 (右)

さらに、 $KTaO_3$ から合成した Ta_3N_5 粉末試料($Ta_3N_5/KTaO_3$)について、窒化時間が光生成キャリアダイナミクスに与える影響を調べるために、窒化時間の異なる試料について過渡分光測定を行った。図 3 は、10 時間窒化処理して合成した $Ta_3N_5/KTaO_3$ 粉末試料(助触媒は非担持)における、励起光 440 nm、検出光 3435 nm での過渡拡散反射の時間変化(図左)と可視・近赤外光領域の過渡吸収スペクトルの時間変化(図右)である。上記の Ta_3N_5/Ta_2O_5 試料の場合(図 1 右)と同様に、光励起後 5 ps までの時間において、光生成した自由電子の減衰挙動は、ほぼ励起光強度に依存しない。また、過渡吸収スペクトルにおいても、 Ta_3N_5/Ta_2O_5 試料の場合(図 2 右)と同様に、光生成した正孔のトラップサイトへの捕獲に伴う、590 nm 付近のブリーチング信号が明瞭に観測されている。

以上の結果を総合する(図 4)と、KTaO3を 0.25 時間窒化処理して合成した Ta_3N_5 試料では、光生成した電子及び正孔はトラップサイトに捕獲されることなく少ない損失で、自由キャリアとして試料表面に移動し、助触媒に電荷を受け渡すことで、水の全分解反応を達成していると考えられる。一方、 Ta_2O_5 を窒化処理して合成した Ta_3N_5 試料や KTaO3を 10 時間窒化処理して合成した Ta_3N_5 試料では、それぞれ Ta 原子と N 原子に由来する電子トラップと正孔トラップサイトの濃度が大きく、光生成した電子と正孔の大部分はトラップサイトに捕獲され、水分解反応の効率低下を招いていると示唆される。 KTaO3を窒化処理して合成した Ta_3N_5 試料では、水の全分解反応を示すものの、最も高い活性を示す 0.25時間窒化処理した試料においてもそれほど効率は高くない(最大で AQE(Apparent Quantum Efficiency)が、320 nm 付近で \sim 2%)。この一つの要因は窒化処理時間が短いために生成される Ta_3N_5 の量が少なく、十分に光捕集できていないことが挙げられる。窒化処理時間を長くすれば Ta_3N_5 の生成量は増加するが、上述のように、同時に試料中のトラップサイトの濃度が増大し、光生成したキャリアはトラップサイトに捕獲され、水分解反応に寄与できない。今後、出発物質の選択や反応方法の工夫など、欠陥に少ない高品質 Ta_3N_5 試料を多く合成する手法の開発が望まれる。

図 4. Ta₃N₅における光生成キャリアダイナミクスの模式図

3. 新規分光法の開発

○顕微過渡吸収イメージング分光装置の開発

図5左は、開発中の装置の概観である。検出光と励起光には、それぞれチタンサファイ ア再生増幅レーザー (Coherent RegA900, パルス幅:~150 fs, 繰返周波数 (可変):10~250 kHz, 波長: 800 nm) からの基本波 (800 nm) と BBO (-Ba₂B₂O₄) 結晶を用いて発生させ た第二高調波(400 nm)を用いた。両者は、対物レンズ(100, NA=0.95)で、回折限界 程度 (半値全幅 ポンプ光:~450 nm, プローブ光:~730 nm) まで集光し試料に照射して いる。同装置では、2つのモード、すなわち (1) ポンプ光とプローブ光を同一点に照射 し、試料側を XY ピエゾステージで平面走査して過渡吸収信号を測定、(2) ポンプ光の照 射位置は固定し、2 軸ガルバノミラーでプローブ光の照射位置のみを平面走査して過渡吸 収信号を測定可能である (共に最小走査刻みは、~10 nm)。図5右上は、ガラス基板上 にスピンコートしたポリチオフェン(P3HT)薄膜を試料として、上記モード(1)で測定 した過渡吸収信号の等高線マップ(遅延時間: t=1 ps, パルス繰返周波数: 17 kHz, XY 走査 刻み: 100 nm)である。試料が一部剥げた領域(マップ左上端)では信号が観測されていな い等、測定結果は、試料の光学顕微鏡像(図5右上)と矛盾しない。一方、図5右下は、モ ード(2)で測定した過渡吸収信号の等高線マップ (XY 走査刻み幅: 40 nm)である。信号 強度の平面分布は、半値全幅が ~800 nm の 2 次元ガウシアンでほぼ再現でき、上述のポ ンプ光とプローブ光の集光スポットサイズから予想される半値全幅の値 (~ 860 nm)と良 く対応している。このように、サブ μm 以下 (~800 nm)の空間分解能で過渡吸収イメー ジング測定を実現できた。

図 5. 顕微過渡吸収イメージング分光装置の概観と主な測定結果

4. まとめ

独自に開発・整備した過渡吸収分光装置を用いた可視光水分解光触媒 Ta_3N_5 における光生成キャリアダイナミクスの解析への応用例について主に述べた。実験的に得られたキャリアダイナミクスに関する知見を材料開発にフィードバックすることで、光水分解効率の高効率化に貢献できるものと考えられる。また、顕微過渡吸収イメージング分光装置を開発し、サブ μm 以下 (~800 nm)の空間分解能で過渡吸収イメージング測定を実現できた。今後、測定可能波長領域や時間領域の拡張とともに、実材料・デバイスへの応用を進めていく予定である。

¹ D. H. K. Murthy, H. Matsuzaki, Z. Wang, Y. Suzuki, T. Hisatomi, K. Seki, Y. Inoue, K. Domen, A. Furube, Chem. Sci. **10**, 5373 (2019).

正於研

時間分解レーザ

光機能材料評価

松崎 弘幸

国立研究開発法人 産業技術総合研究所 分析計測標準研究部門 ナノ分光計測研究グループ

hiroyuki-matsuzaki@aist.go.jp

JASIS2019 コンファレンス 分析計測標準研究部門 第5回シンポジウム技術革新を支援する計測・分析ソリューション2019/9/6 @ 幕張メッセ国際会議場 国際会議室

光触媒材料の光生成キャリアダイナミクスの解析 ζ 有機電界発光(EL)材料の光励起状態の解析 ・過渡吸収分光法とは? ~原理と装置概要 ・顕微過渡吸収イメージング分光装置の開発 ・太陽電池デバイスの光電変換過程の解析 ーアウトレインー シリコン太陽電池モジュール 熱活性化遅延蛍光材料 可視光分解光触媒材料 新規分光法の開発 はじめに 応用例 まとめ ر ز რ 4

透過、反射、散乱光等の時間変化を、高速光検出器 (ナノ秒~ミリ秒) or 可変光学遅延 (フェムト秒 ~ ナノ秒)を用いて測定

有機·無機材料、固体、液体、薄膜 etc 幅広く適用可能

検出光 =状態変化を検知する

Fa₃N₅における光生成キャリアダイナミクスの解析

Ta₃N₅ (従来法 Ta₂O₅窒化

酸素のみが発生

Ta₃N₅単体から水素 &酸素両方が発生

Ta₃N₅ (KTaO₃窒化 0.25 時間)

KTaO3窒化Ta3Ns (0.25時間)では、電子及び正孔トラップサイトの濃度が低く、光触媒反応に関与する自由なキャリアの割合が増え、高活性

0.17 eV

VB (NZp

VB (NZp)

15

✓ Ta₂O₅窒化Ta₃N₅ → <u>欠陥に正孔がトラップ</u> Editor's Choice

DHK. Murthy and H. Matsuzaki et al.,

600 640

280

720

600 640 680

98

920

440 nm pump

過渡吸収スペクトル

trided from Ta,O_k

200 ps 20

ф

(%) /uogdiosqy

rided from KTaO, for 8.25 hour

正孔トラップによる ブリーチング信号 Chemical Science 10, 5353 (2019)

熱活性化遅延蛍光(<u>TADF</u>)材料の発光メカニズムの解明 H. Uoyama, et al., Nature (2012). 有機EL用発光材料の特徴の比較

 製造コスト
 発光効率

 電気 (第一世代)
 (主にC, N, O)
 △(25%)

 重項 (第一世代)
 (第一世代)
 (稀少金属合有)

 TADF材料
 ○(100%)

 (第三世代)
 (主にC, N, O)
 ○(100%)

材料の飛躍的な低コスト化を実現する革新的発光材料 <u>発光メカニズム</u>の詳細が明らかではなく、高性能TADF材料に向けた 精密な設計指針の確立が課題

過渡吸収分光法による励起状態ダイナミクスの解析

16

先端分析計測機器群による新材料開発支援プラットフォーム

分析計測標準研究部門 齋藤 直昭¹ ナノエレクトロニクス部門 松林 信行¹ 先端ナノ計測施設(ANCF)¹

産総研では、国内の産業力強化と新産業創出の先導や社会イノベーションへの貢献を目指して、 先端計測分析技術の開発を実施しています。これまで見えなかったものを見えるようにする計測 技術を創造し、次いで、それを各種の応用に適用して分析技術として仕上げることをミッション にしています。これらを実現する手法として、開発した装置や技術を公開して、社会における課 題の解決に挑戦しています。

公開による計測支援を実施するプラットフォームとして、産総研 先端ナノ計測施設(AIST Nanocharacterization Facility: ANCF)を設置しています。産総研 ANCF は、TIA(オープンイノベーション拠点)共用研究開発施設、および、文部科学省事業のナノテクノロジープラットフォーム・微細構造解析プラットフォームの双方に参画し、両制度の併用で全国からの計測要望に幅広く対応しています。また、産総研の制度である共同研究や技術コンサルティングなども活用して、オーダーメイド的な計測にも対応しています。

ANCFでは、市販装置ではない独自に開発した計測装置や技術を中心に公開しています。陽電子プローブアナライザー装置は、電子加速器から生成した陽電子マイクロビームを用いており、世界的には他にドイツに類似の装置があるだけです。極端紫外光光電子分光装置は独自に開発したレーザー生成プラズマ光源を用いた他にはないユニークな光電子分光装置です。また、X線吸

収微細構造分析装置や走査型電子顕微鏡は、産総研が開発した超伝導検出器を搭載して既存装置を上回る分解能と感度を実現しています。過渡吸収分光装置、リアル表面プローブ顕微鏡装置や NMR 装置でも、市販製品である基本装置を精巧に合わせ、かつ、高技能な試料調整法と解析法等を適用することで、他を凌駕する性能を実現しています。

ANCF 公開機器と分析対象

陽電子プローブマイクロアナライザー (PPMA): ナノ空孔

超伝導蛍光収量 X 線吸収微細構造分析装置(SC-XAFS): ナノ局所構造、電子状態

可視-近赤外過渡吸収分光計測装置(VITA): 原子、電子状態

リアル表面プローブ顕微鏡(RSPM): ナノ表面構造

固体 NMR 装置 (SSNMR): 固体材料局所構造

極端紫外光光電子分光装置(EUPS): ナノ表面物性

超伝導蛍光 X 線検出器付走査型電子顕微鏡(SC-SEM):軽元素の分布状態

先端計測分析技術を研究開発する研究者がその開発技術を応用した計測支援を実施し、困難な 課題を皆様と共同で解決することを目指しています。

A.AIST

ANCF職

JASIS 2019 コンファレンス 分析計測標準研究部門 第5回シンボジウム 技術革新を支援する計測・分析ソリューション-

新材料開発支援プラットフォーム 先端分析計測機器群による

齋藤 直昭1,3、 松林信行2,3、 ANCFチーム3 分析計測標準研究部 p_1 ,ナノエレクトロニクス部 p_3 ,産総研 先端ナノ計瀏施設 p_3

2019年9月6日(金) 幕張メッセ国際会議場 国際会議室

Advenced
Characterization
Nanolectrology
Patform

AAIST

JASIS 2019 コンファレンス

ANCF瓣

ANCF# ノ計測施設 **雇総研 先端力** (事務局) ナノエレクトロニクス研究部門

分析計測標準研究部門 物質計測標準研究部門

四月

制度

NanotechJapan

TIA 共用研究開発施設 文部科学省ナノテクノロジープラットフォーム の双方に参画

○微細構造解析に特化した分析技術をプラットフォームで公開

新材料開発(ナノ材料、ナノデバイス)を支援 ○企業・大学の研究者らの物性研究や →共同研究などへの展開 ○計測ニーズの把握 → 新たな研究課題への展開

A AIST

JASIS 2019 コンファレンス

ANCF輸

分析計測標準研究部門のニッション

音響・超音波、放射線、中性子線に関する国家標準の維持と供給

イオンビーム、超音波などを用いた 先端計測技術の研究開発 2. 量子線、レーザー、

2A. 非破壊検査・計測技術への展開

2B. 材料分析技術への展開

ナノ材料、ナノデバイスなどの微細構造解析に 特化した分析技術を公開

ANCF譜 産総研 先端ナノ計測施設

文部科学省ナノテクノロジープラットフォーム 2012年度から10年計画(開始されました。ナノテクロジーに関する最先編写影像と活用ノウハウを有する機関が連携 して、全国的な設備共用体制を共同で構築するものです。三つの技術領域(機構選集解析、機構加工、分子・機関合成) により構成されます。

(税/組内構) 近月な析 プラットフォーム 全国11機関から構成され、最先端計測共用ネットワークを構築し、ナノテク・材料分野における学問的・技術的課題の解決によるイパペーションに寄与し、まが国のナイテクロシ・の夏なる発展、競争力の向上、研究人材の育成に貢献します。さらに、先端ナイ批財体群を産学官の研究開発支援に供することにより、世界トップレベルの研究成果を創出しつの、産業ニーズにある、表名支援と集め的信頼しまり。

産総研ANCF:独自開発の最先端分析機器と解析技術を公開

表面プローブ顕微鏡 (RSPM) (ナノ表面構造)

極端紫外光光電子分光 (EUPS) (ナノ表面物性)

X線吸収微細構造分析(XAFS)(ナノ局所構造、電子状態) ン粒子触媒などの最表面原子層の電子物性

超伝導蛍光X線検出器付走査型電子顕微鏡 (SC-SEM)

国体核磁気共鳴分析 (SSNMR) (国体材料局所構造) 国体體線材料、目動車タイヤなどのゴム材料、環境負荷医謀アモルファスカーボン

レーザー過渡吸収分光 (NITA) (原子、電子状態) 有機太陽電池や有機機能性分子

陽電子欠陥分析 (PPMA) (ナノ空孔) ガスパリア農や分離度の分子間空隙、半等体中の格子欠陥

赤字は本日のシンポ(ロ頭、ポスター)で関連技術を紹介

ANCFの年度支援実績(ナノテクノロジープラットフォーム制度(成果公開))

2015年:65件 6 9 100	2018年:77件
25	2017年: 76件 10 16 45
2013#: 63#	2016年: 73件
2012#: 46# 5	支援件数(公開)本企業中小企業本学本学本の研究機関その他

-2年度目(2013年度)から順調に推移

・大学・研究機関の割合は50-75% ・民間企業の割合は25~50%→大企業・中小企業の先端材料開発支援

・外部供用率は40~60%

* 成果非公開での利用もほぼ同程度

学生研修プログラム

高専生、大学生、大学院生を対象に「学生研修プログラム」を実施しています。 最先端装置に関する技術を体験できます。 人材育成の観点で、

2019年度産総研の実施内容:終了

研修テーマ	装置名	中春地画
低速陽電子ビームによる欠陥・ナノ空隙評価法	陽電子プローブマイクロアナライザー(PPMA)	7/29~7/31
超伝導検出器による軟X線領域の蛍光X線XAFS測定の基礎	超伝導蛍光収量X線吸収微細構造分析装置(SC-XAFS) 7/29~8/1	7/29~8/1
時間分解分光	可視一近赤外過渡吸収分光計測装置 (VITA)	7/29~8/1
走査型プローブ顕微鏡 (SPM) の原理と実環境ナノ物性計測	リアル表面プローブ顕微鏡(RSPM)	7/29~8/2
固体NMR計測·解析技術	固体NMR装置(SSNMR)	7/29~7/31
最表面原子層の観測、仕事関数・バンド曲が小の評価、電子のエネルギー緩和時間の定性的評価を行う極端紫外光光電子分光 (EUPS) - 原理と測定実習	極端紫外光光電子分光装置(EUPS)	7/29~7/31
超伝導検出器による軟x線分光測定の基礎講習 超伝導X線検出器付き走査型電子顕微鏡での材料分析実習	超伝導蛍光X線検出器付走査型電子顕微鏡(SC-SEM) 7/29~8/1	1/29~8/1

定員:各2~5名 毎年5月頃に告知・募集、7-9月に実施しています

Research Institute for Measurement and Analytical Instrumentation

先端分析計測機器群による 新材料開発支援プラットフォーム

齋藤直昭^{1,3}、松林信行^{2,3}
¹分析計測標準研究部門、²ナノエレクトロニクス研究部門、³ANCF

ポイント

- 独自開発の先端計測分析機器や解析手法を公開
- 微細構造解析により、ナノ材料・ナノデバイスなどの新材料の開発を支援

概要

産総研先端ナノ計測施設(ANCF)は、TIA(オープンイノベーション拠点)共用研究開発施設、および、文部科学省ナノテクノロジープラットフォーム事業微細構造解析プラットフォームに参画し、全国からの計測の要望に幅広く対応しています。

公開装置

PPMA 空孔の3D分布

RSPM カーボンナノチューブのサイズ測定例

EUPS

(装置名

- ・陽電子プローブマイクロアナライザー(PPMA)
- ・リアル表面プローブ顕微鏡(RSPM)
- ·可視·近赤外過渡吸収分光(VITA)
- ·固体核磁気共鳴(SSNMR)
- ·X線吸収微細構造(SC-XAFS)
- ·極端紫外光光電子分光(EUPS)
- ·超伝導蛍光X線検出器付SEM(SC-SEM)

(分析対象)

- :ナノ空孔
- :ナノ表面構造
- :原子、電子状態
- :固体材料局所構造
- :局所構造、電子状態
- :ナノ表面物性
- :軽元素マッピング

SSNMR

SC-SEM

Point1, 2で得られ た蛍光X線スペクト

SC-XAFS

NドープSiC(300 ppm)のXANESスペク

VITA

有機薄膜太陽電池材料の過渡吸収の減衰挙動

URL:https://unit.aist.go.jp/rima

放射線計測機器の性能試験・評価

放射線標準研究グループ 加藤 昌弘、黒澤 忠弘、森下 雄一郎、田中 隆宏、 清水 森人、山口 英俊、石井 隼也

要旨

放射線標準研究グループでは、さまざまな種類の放射線を規定量照射できる設備を管理するとともに、放射線計測技術の開発を行ってきた。我々はこの計測技術を活用して依頼者の依頼内容にあわせた計測や装置開発を、産総研の共同研究契約や技術コンサルティング契約の制度に基づいて行っている。

1. はじめに

放射線標準研究グループでは、規定量の放射線(γ 線、X線、医療用リニアック、 β 線)を照射できる設備を管理するとともに、電離箱やカロリメータを用いた放射線計測技術の開発を行ってきた。我々はこの計測技術を活用して計量法に基づく校正すなわち jcss 校正 1 の供給を行っているが、依頼者の依頼内容によっては jcss 制度の枠にとらわれない校正・試験・計測を、産総研の共同研究契約や技術コンサルティング契約 2 の制度に基づいて行っている。

2. 放射線照射設備

2. 1 γ線

 γ 線照射施設として、 γ 線源照射室(図 1(a))及び大 γ 線源照射室(図 1(b))の二つを所有している。 γ 線源照射室では主に防護用の標準、大 γ 線源照射室では主に治療・工業用の標準に対応している。照射に使用している線源は以下のものである。

小γ線源照射室: Cs-137--- 222 GBq, 18.5 GBq, 1.85 GBq

Co-60--- 185 GBq, 18.5 GBq, 3.7 GBq

大γ線源照射室: Cs-137--- 34 TBq Co-60--- 134 TBq

ここに放射能量は公称放射能を示す。

 γ 線場の線量率は空気カーマ率を基本的な物理量として管理している。照射可能な空気カーマ率は線源の入れ替えや減衰により変化するが、低い線量率はおよそ 10^{-10} G/s のオーダー、高い線量率は Co-60 では 10^{-2} Gy/s のオーダー、Cs-137 は 10^{-4} Gy/s のオーダーである。 γ 線空気カーマ率の測定には、グラファイト壁空洞電離箱を用いており、測定原理は Bragg-Gray の空洞理論によっている。線量率の違いにより、空洞容積の異なる 2 種類の円筒型空洞電離箱を用いて絶対測定を行う。設定した空気カーマ率から換算係数および照射時間を用いて空気カーマ、照射線量、照射線量率、線量当量、線量当量率を決定できるため、これらの量による照射も行っている。

2.2 X線

X線の照射施設は、エネルギーによって中硬 X線照射室(図 1(c))と軟 X線照射室(図 1(d))を管理している。中硬 X線照射室は管電圧でおよそ $50~kV \sim 300~kV$ 、軟 X線照射室はおよそ $10~kV \sim 50~kV$ で X線を発生させている。空気カーマ率の強度はおよそ $10^8~Gy/s \sim 10^3~Gy/s$ のオーダーで、主に防護・診断レベルである。X線発生装置からの X線は、管電圧に相当するエネルギーを最高エネルギーとして、それより低いエネルギーに連続的に分布する。この連続 X線を、アルミ、銅、錫、鉛などの薄い板(フィルター)を通過させると、X線のエネルギー分布(線質)を変化させることが出来る。利用可能な線質は、JIS~Z~4511:2018規格による QI 線質や ISO4037-1:2019 規格による Narrow spectrum などの線質、マンモグラフィ装置に対応した線質などがある。X線の空気カーマ率は自由空気電離箱で測定を行う。X戦についても、空気カーマ率から換算係数や照射時間を用いて空気カーマ、照射線量、照射線量率、線量当量、線量当量率を決定できるため、これらの量による照射も可能である。

2.3 β線

図 1(e)に β 線標準場を生成するための照射装置を示す。 β 線照射室に設置された β 線照射装置(BSS2、AEA TECHNOLOGY)に、Sr-90/Y-90 線源、Kr-85 線源、Pm-147 線源と、ビームフラッタニングフィルタを設置することで β 線標準場を生成する。Sr-90/Y-90 線源、Kr-85 線源、Pm-147 線源の公称放射能量はそれぞれ、460 MBq, 3.7 GBq, 3.7 GBq で、 β 線標準場において基本的な物理量である 70 μ m 組織吸収線量率の大きさは、2019 年 8 月の時点でおよそ 30 mGy/h, 60 mGy/h, 4 mGy/h である。70 μ m 組織吸収線量率は外挿電離箱と呼ばれる β 線などの透過力が弱い放射線を測定するのに適した電離箱を用いている。Sr-90/Y-90 線源、Kr-85 線源、Pm-147 線源の 70 μ m 組織吸収線量率の他に、3 mm 線量当量率の照射、Ru-106/Rh-106 線源の照射にも対応している。

2. 4 医療用リニアック

図 1(f)に医療用高エネルギー光子線を発生させる医療用リニアックを示す。光子線のエネルギーは公称加速電圧で 6 MV、10 MV、15 MV である。医療用リニアックからの光子線では水吸収線量率で照射を行っており、線源からの距離 1 m、水の深さ 10 g·cm⁻² において 0.02 Gy/s ~ 0.08 G/s である。水吸収線量率はグラファイトカロリーメーターを用いた熱量測定とモンテカルロシミュレーションにより決定している。

3. 技術コンサルティング契約や共同研究の事例

表1に放射線標準研究グループで供給実績のある校正・試験・計測の概要を示す。開発中の計測器や個人線量計、サーベイメータの試験についての依頼や相談が多く寄せられている。依頼者が試験する計測器に対し当研究グループで管理する照射場で規定の線量を照射する形式の試験が多い。照射した線量は、空気カーマ、吸収線量、線量当量など依頼者

の希望する単位で、照射条件などとともに報告している。共同研究契約の形式では、これまでに蓄積した測定技術をベースにした研究開発を通じて所外の施設を含む様々な放射線の計測を行っており、放射線医療装置やX線自由電子レーザなど先端技術による放射線源にも対応している。

4. おわりに

当研究グループではX線、 γ 線、 β 線の国家標準を維持しているため、これらの放射線の試験や校正について、小さい不確かさでの報告が可能である。またグループで管理している国家標準の照射場に限らず、放射線医療における線量計測技術や、放射線防護の法令改訂に対応するための計測技術など、新たな放射線計測のニーズに応じた技術開発を行っている。NMIJ 計測クラブ 3 を通じて技術相談や最新の計測技術の紹介も行っているので、こちらもご利用ただけると幸いである。

参考文献

- ¹ 産総研計量標準総合センター https://unit.aist.go.jp/nmij/
- ²技術コンサルティング契約公式サイト https://unit.aist.go.jp/tmo/ja/consulting/index.html
- ³NMIJ 計測クラブ 放射線放射能中性子計測クラブ

https://unit.aist.go.jp/nmij/nmijclub/hoshasen/hoshasen.html

表 1. 放射線標準研究グループで供給実績のある校正・試験・計測の概要

制度	目的など	使用する放射線施設
共同研究	・依頼者や共同研究者の保有す	・グループで管理している γ
技術コンサルティング契約	る放射線照射設備や測定器の校	線、X 線、リニアック、β 線の照
	正	射場
	•相互比較	•外部照射設備(重粒子線、X
	・開発中の放射線計測器や個人	線自由電子レーザ、大線量照
	線量計、サーベイメータの試験	射施設、密封小線源)
jcss 校正	・特定二次標準器(標準電離箱な	・グループで管理している γ
	ど)の校正	線、X 線、リニアック、β 線の照
		射場
		・依頼者の所持する線源

- 図 1. 放射線標準研究グループで管理している放射線照射設備
- (a) 小 γ 線照射室、(b) 大 γ 線照射室、(c) 中硬 X 線照射室
- (d) 軟 X 線照射室、(e) β 線照射室、(f)医療用リニアック照射室

XFEL用放射計

A.A.IST

ガンマ線照射室

低線量率ア線照射装置

大ア線照射室

除染レベル(0.23 nSv/h)を校正 可能な校正装置 1.85 GBq, 18.5 GBq 222 GBq, 34 TBq 3.7 GBq, 18.5 GBq, 185 GBq, 148 TBq 線源強度 線源核種 Cs-137 Co-60

B線照射施設

マンモグラフィ

マンモグラフィX線(Mo, Rh, W管球)

W/A1

Free air chamber

軟X線照射室

3mm線量当量の照射、Ru-106/Rh-106の照射にも対応

~ 4 mGy/h

Pm-147

管電压: 10 kV - 50 kV

(人代) 機器組長

ECFERRAL 整象技術総合研究所

中硬X線照射室

管電圧:50 kV - 300 kV

ELECTRONIA 整準技術総合研究所

- 66 -

AAIST

Co-60ァ線の水吸収線量標準

医療用リニアック

MARKET MATERIAL MARKET MARKE

10

在外田和田海本本教制 / のままなること

水吸収線量率 20 mGy/s - 80 mGy/s

高エネルギー光子線 6 MV, 10 MV, 15 MV

エネルギー、線量、角度特性など 受動型線量計の特性試験

産総研の校正結果と校正事業者の校正結果を比較

• JCSS認定のための技能試験

JEMIC ...

Nite hard sales a betracky and tolerates

し、校正能力を示す。

認定制度に関する技能試験

産総研が照射した線量とモニタリングサービス事業

試験所認定のための技能試験

者が報告する値を比較し、事業者の能力を示す。

XEBFEAA 日本協合性認定協会 Japan Accrediation Board

小型放射線積算線量計 開発中の線量計の試験

電離箱との組み合わせで用いる電流計の開発

EDPENDED 整築技術総合研究所

技術コンサルティング・受託研究・共同研究

A.A.IST

A AIST

技術コンサルティング・受託研究・共同研究

・外部施設の放射線強度測定 イオンビームの測定(重粒子線施設) 医療用線源の強度測定 静電気除去用軟X線発生装置 X線自由電子レーザ・放射光施設

Aperture Aperture ERMSREHISSE

TSID

- 不確かさが明確な線量の照射
- 電離箱・カロリメータ等による放射線計測
 - 電流計などの関連技術の開発

お気軽にお問い合わせください 放射線標準研究グループ

ELFERRALL 整築技術総合研究所

- 68 **-**

超音波利用機器の性能・安全性評価技術の開発

音響超音波標準研究グループ 吉岡 正裕、内田 武吉、千葉 裕介、松田 洋一、堀内 竜三

要旨

医療や産業の分野において超音波を発生させる機器が多く利用されている。人体に超音波を照射して診断や治療を行う医用超音波機器においては、機器のメーカは製造、販売の承認を得るために超音波の安全性を評価する必要がある。また超音波洗浄機を用いてシリコンウェハ、液晶ガラス基板、光学部品などを洗浄する際には、製造工程の歩留まり率の向上が重要である。一方化学配管設備の維持管理のためには当該設備の性能評価が重要である。これら超音波利用機器の性能・安全性評価のためには、機器から発生する超音波の精密計測に基づく評価技術の確立が不可欠である。産業技術総合研究所計量標準総合センターは、我が国における超音波計測の基準となる国家計量標準の開発を担う国内唯一の機関であり、我々は超音波の総出力である超音波パワーや超音波による圧力変動である超音波音圧の精密計測、強力な超音波に伴い液体中に気泡が生じる現象であるキャビテーションの発生量の定量計測技術を研究している。我々はこれらの計測技術を超音波利用機器の性能・安全性評価のために橋渡ししたいと考えている。そのためには、機器のメーカとの協同が不可欠であり、産業技術総合研究所の共同研究、受託研究、技術コンサルティングなどの制度による連携を進めていく所存である。

1. はじめに

医療や製造の現場において、超音波を発生させ利用する機器が多く使用されている(図1)。超音波診断装置は人体に超音波を照射して体内を映像化する。肝臓、胆嚢、膵臓等の腹部の臓器や心臓、動脈、静脈、胎児の検査など広く使用されている。また近年、より強い超音波を人体に照射して、前立腺、膵臓、肝臓、乳房、子宮等の癌の治療に用いられる機器も登場している。これら医用超音波機器の製造、販売の公的な承認を得るためには、メーカは機器の安全性を評価する必要がある。

超音波洗浄機は、硬い部品の細かい部分の洗浄に適しているため、半導体、電子電気、精密機器などの製造プロセスにおいて、シリコンウェハ、液晶ガラス基板、光学部品などの洗浄に使用されている。洗浄効率と洗浄対象の損傷のリスクのバランスを最適化させるためには、洗浄槽内の超音波の出力を制御する必要がある。また超音波などにより生じる圧力差のため液体中に気泡が発生する現象であるキャビテーションは、化学配管設備の腐食の原因となる。これら超音波利用機器の性能や安全性を評価するためには、機器から発生する超音波の精密計測を基盤とした評価技術の開発が不可欠である。

図 1. 超音波利用機器(左:診断用超音波プローブ、右:超音波洗浄機)

産業技術総合研究所 計量標準総合センター(NMIJ)は、社会で必要とされるあらゆる計測の基準となる国家計量標準の開発を担う我が国唯一の機関であり、我々は NMIJ において超音波の計量器を校正するための超音波計量標準と超音波の精密計測技術の開発を行っている。我々は超音波利用機器のメーカと連携し、機器の性能・安全性評価技術の確立に寄与したいと考えてるため、我々の開発した超音波計測技術や、取り組んでいる研究について紹介する。

2. NMIJ の超音波精密計測技術

NMIJでは、超音波パワー^{1,2}、超音波音圧の計量標準と精密計測技術 ^{3,4,5}及びキャビテーション発生量の定量計測技術 ^{6,7}を研究している。超音波パワーは音源から発生する超音波の総出力を表し、単位は W である(図 2)。医用超音波の安全性評価に不可欠な量であるのみならず、超音波利用機器に用いられる音源の入出力特性評価に利用することができる。超音波音圧は超音波伝搬により生じた伝搬媒質の圧力変動で、単位は Pa であり、一般的に水中用超音波マイクロホンであるハイドロホンを用いて計測される(図 3)。医用超音波機器の開発や安全性評価のために、超音波利用機器から照射される超音波音圧から算出される音響強度の空間分布が計測される。キャビテーションは超音波洗浄のために不可欠な現象である。我々はキャビテーションによる気泡の発生、膨張収縮、圧壊の際に生じる音響的な信号を検出するセンサ(図 4)を用い、気泡の個数などを単位とした定量的な計測を実現するための研究を進めている。

図 2. 超音波パワー計測

(左:高出力超音波パワー校正装置、右:音源(超音波振動子)の入出力特性)

図 3. 超音波音圧計測 (左:ハイドロホンによる音圧計測、右:音響強度の平面分布)

図 4. キャビテーションセンサを用いた計測 (左:キャビテーションセンサ、右:液体の入った管の外周に設置したセンサの位置と出力の関係、位置 B の管内部で気泡が破裂している)

3. 超音波利用機器の性能・安全性評価に資する超音波計測技術の研究

我々は前節で述べた超音波計量標準及び精密計測技術を用いて、超音波利用機器の性能・安全性評価に資するための計測技術の開発も進めている。超音波診断装置の診断画像の画質を向上させるためには音圧を高くする必要がある反面、安全性確保の観点から利用できる音圧の高さは規制されている。そのためメーカは音圧の計測値だけでなく計測の不確かさも考慮して規制値を超えないよう、音圧の高さを抑える必要がある。しかし、現在国際規格で規定されている計測法では、診断用超音波として用いられているパルス状の広帯域超音波を正確に計測できないことが知られている。この問題を解消するため、我々は広帯域超音波音圧の精密計測技術を研究している。計測法による不確かさを定量化して、より高い音圧を安心してご利用いただけるようにしたい。

安全への関心が高い我が国においては、安全性評価法が確立していないことがネックとなり、強い超音波を用いて癌などの治療を行う機器の開発、普及が進んでいない。我々は治療器に用いられる広帯域、高出力超音波の精密計測技術を開発し、その安全性評価法の確立に寄与したい。

前述のとおり、超音波洗浄機において洗浄能力と歩留まり率のバランスを最適化するためには超音波音場の制御が必要である。そのため、超音波パワーに加え洗浄能力を決める

キャビテーション発生量の計測が不可欠である。しかし、現在のところ洗浄層内の超音波音場の評価技術は十分に確立されていない。我々の計測技術を用いた洗浄層内の音場の直接計測による評価技術を開発し、洗浄層内の音場制御に貢献したい。

我々が開発しているキャビテーション発生量の計測技術は、超音波音場内に限らず気泡が発生する環境であれば適用可能である。キャビテーションセンサを化学配管設備の配管に設置することで、腐食の原因となる気泡の発生、破裂個所を特定できると考えている。

4. まとめ

我々は NMIJ で開発している超音波精密計測技術を超音波利用機器の性能・安全性評価のために橋渡ししたいと考えている。それには対象となる機器の情報の共有や、開発した評価技術に対応させるための機器の改良などにおいて、機器のメーカとの協同が不可欠である。そのため産業技術総合研究所の共同研究、受託研究、技術コンサルティングなどの制度によるメーカとの連携を進めていく所存である。

¹ T. Uchida, T. Kikuchi, M. Yoshioka, Y. Matsuda, and R. Horiuchi, Acoust. Sci. & Tech. **36**, 445-448 (2015).

² T. Uchida, M. Yoshioka, and R. Horiuchi, Jpn. J. Appl. Phys. 57, 07LC04 (2018).

³ 吉岡正裕、産総研計量標準報告 5, 189-197 (2006).

⁴ M. Yoshioka, and T. Kikuchi, Jpn. J. Appl. Phys. **50**, 07HC16 (2011).

⁵ Y. Matsuda, M Yoshioka, and T. Uchida, Materials Transactions **55**, 1030-1033 (2014).

⁶ T. Uchida, S. Takeuchi, and T. Kikuchi, Jpn. J. Appl. Phys. **50**, 07HE01 (2011).

⁷T. Uchida, S. Takeuchi, and T. Kikuchi, Jpn. J. Appl. Phys. **51**, 07GD03 (2012).

⁸ Y. Chiba, M. Yoshioka, and R. Horiuchi, Proceedings of Symposium on Ultrasonic Electronics **39**, 1P5-7 (2018).

超音波利用機器の性能・安全性評価技術の開発

国立研究開発法人産業技術総合研究所

計量標準総合センター (NMIJ)

音響超音波標準研究グループ

分析計測標準研究部門

A.AIST

医療や製造のために超音波を発生させる機器

超音波洗浄機

2/12

診断用超音波プローブ

ENGINE BOM TANK TO THE PARTY T

1/12

堀内竜三

千葉裕介、松田洋-

内田武吉、

吉岡正裕、

NMIJの超音波精密計測技術

→そもそも正しく超音波を計測できているのか不明

機器の性能・安全性評価における問題

医療や製造のために超音波を 発生させる機器の製造者様へ 超音波パワー

超音波音圧 (超音波による圧力変動) 単位 Pa

(超音波音源の総出力) 単位 W

(強力超音波により気泡が発生する現象) 単位 個、Wなど…研究中 キャビテーション発生量

4/12

3/12

我が国で唯一超音波国家計量標準の開発を担う

私どもが計測いたします

産総研 計量標準総合センター(NMIJ)にて

73

8/12

私どもの技術を活用

10%(例)

不確かさを 定量化

10 %

超音波治療器の製造販売をご検討の事業者様へ 従来より強い超音波を用いる癌治療器などの 開発・普及の促進を目指します 広帯域、高出力 (50 kHz - 100 MHz, 100 W) 超音波の精密計測 技術の開発 安全性評価法の確立

10/12 超音波音場の制御による洗浄能力 (強い音で向上) と 歩留まり (強い音で低下) との最適化を支援します 私どもの技術を活用 キャビテーション発生量: 音源から生じた 超音波音場を直接計測 不確かさ 10% 超音波パワー: 超音波洗浄器の製造者様へ 定量計運 により、超音波音場を評価 キャビテーション発生量: 見積もり不可 音源への入力電力、電圧 桁がわかる程度の精度 現状 超音波パワー:

共同研究、受託研究、技術コンサルティングなどによる私どもとの連携をご検討願います

12/12

— 75 —

デジタルホログラフィを用いた高精度面外変位計測 非破壊計測研究グループ 夏 鵬、李 志遠、遠山 暢之

要旨

位相シフトデジタルホログラフィは干渉縞から不要な成分である共役像と 0 次回折光を除去でき、物体の 3 次元計測が可能である。しかし、ピエゾ素子応答の非線形によって、位相シフト量を正確に制御できない場合があり、位相シフト計算を行う際に共役像成分を完全に除去できないといった問題があった。この問題を解決するために、我々は校正型位相シフトデジタルホログラフィを提案した。本システムはピエゾ素子応答の非線形に起因する参照光の位相ずれ量を高精度に検出、干渉縞画像を補正することで再生像の画質を向上させることが可能である。本稿では、提案システムの原理及び本システムにより電子デバイスのナノオーダーの熱変形の動的計測結果を報告する。

1. はじめに

Micro Electro Mechanical Systems1(MEMS)は年々市場規模や応用分野が拡大してきているが、その信頼性を確保するためには、構成要素である各種有機材料、基板、合金材料などの強度や弾性などの力学特性を正確に評価する必要があり、デバイスの高精度な変形計測技術に対する産業ニーズは極めて高い。

既存の3次元計測技術であるAFMや共焦点顕微鏡等の技術は、形状・変形情報の計測に際して、機械的な走査が必要であり、動く物体の変形情報取得は不可能である。デジタルホログラフィ¹は、単一露光或いは非常に少ない記録回数で物体の3次元情報を記録できる。本技術は、物体光と参照光によって生成された干渉縞画像を撮像素子に記録し、計算機上で得られた干渉縞に画像処理を行うことで物体光の振幅と位相情報を得る。しかし、干渉縞に不要な成分である0次回折光と共役像を除去できない場合があり、再生像の画質の劣化につながる。これらの不要な成分を除去する手法として、位相シフトデジタルホログラフィが提案された²。この技術は位相シフト装置を利用して、ナノオーダーの精度で参照光の光路長を光軸に沿って移動させることにより、複数枚の位相シフトされた干渉縞画像を記録し、位相シフト計算を行うことで不要な像成分を除去する。しかしながら、ピエゾ素子の応答が非線形であるため、正確に位相シフトできない場合がある。そのため位相シフト計算を行う際に共役像成分を完全に除去できず、再生像の画質が低下する問題がある。従って参照光の位相ずれ量を検出し、干渉縞画像を補正することで再生像の画質を向上させる技術の開発が望まれている。

本稿では、位相シフトデジタルホログラフィとモアレ縞解析法を融合することにより、 高精度な3次元変形計測を実現した光計測システムを紹介する。

2. 研究方法

2. 1 原理

提案システムの光学系の一例を図1に示す。本システムは従来システムに基づき、1台のイメージセンサと複数の光学部品を追加することにより構築したものである^{3,4}。計測対象からの反射光と位相シフトされた参照光の干渉縞画像はカメラ1で記録される。一般的に計測対象は粗面物体であり、カメラ1が記録する干渉縞画像はランダムな位相をもつ画像である。一方、計測対象に照射する前にビームスプリッタで取り出したレーザー光と、位相シフトされた参照光の干渉縞画像をカメラ2で記録する。カメラ2が記録する干渉縞画像は二つ平面波の干渉により生成した規則性の縞模様であるため、サンプリングモアレ法^{5,6}によりピエゾ素子など位相シフト装置の動作精度の低さに起因する参照光の位相ずれ量を検出できる。この位相ずれ量を用いてカメラ1で記録した干渉縞画像を補正することで再生像の画質を改善し、計測精度を向上させることができる。

図1. デュアルカメラを用いた校正型位相シフトデジタルホログラフィの原理

2. 2補正アルゴリズム

ここでは4ステップ位相シフトデジタルホログラフィ 2 を例にして、補正アルゴリズムを説明する。4ステップ位相シフトデジタルホログラフィは位相シフト量が $\pi/2$ ずつ異なる4枚の干渉縞画像を記録する。まず、参照光の位相 ϕ_R を0に設定し、1 枚の干渉縞画像を記録する。次にミラー付きピエゾ素子を移動させて参照光の位相 ϕ_R を $\pi/2$ ずつシフトし、参照光の位相が $\pi/2$, π , $3\pi/2$ ずれた干渉縞画像を記録する。最後に4ステップ位相シフト計算から物体像を再生する。しかしピエゾ素子応答の非線形によって、位相を正確にシフトできない場合もある。その場合は、2枚目からの参照光の位相シフト量は、 $\pi/2+\Delta\delta_1$, $\pi+\Delta\delta_2$, $3\pi/2+\Delta\delta_3$ となる。ここで $\Delta\delta_1$, $\Delta\delta_2$, $\Delta\delta_3$ は設定した位相シフト量とのずれ量である。提案したシステムを用いることで、これらの位相シフトずれ量を検出でき、補正した撮像面での物体光の振幅情報と位相情報をそれぞれ式(1)、(2)から算出する。

$$A(x,y) = \frac{\sqrt{(a_3M + a_2N)^2 + (a_4M - a_1N)^2}}{2A_R(a_1a_3 + a_2a_4)},$$
(1)

$$\phi(x,y) = \tan^{-1} \frac{a_4 M - a_1 N}{a_3 M + a_2 N},$$
(2)

ここで、 $a_1 \sim a_4$, M, N は下記の通りである。

$$\begin{split} a_1 &= 1 + \cos(\Delta \delta_2), \\ a_2 &= \sin(\Delta \delta_2), \\ a_3 &= \cos(\Delta \delta_3) + \cos(\Delta \delta_1), \\ a_4 &= \sin(\Delta \delta_3) + \sin(\Delta \delta_1), \\ M &= I(x, y; 0) - I(x, y; \pi + \Delta \delta_2), \\ N &= I(x, y; \frac{3\pi}{2} + \Delta \delta_3) - I(x, y; \frac{\pi}{2} + \Delta \delta_1). \end{split}$$

ここで、I(x,y;0), $I\left(x,y;\frac{\pi}{2}+\Delta\delta_1\right)$, $I(x,y;\pi+\Delta\delta_2)$, $I\left(x,y;\frac{3\pi}{2}+\Delta\delta_3\right)$ は、参照光の位相を 0, $\pi/2+\Delta\delta_1$, $\pi+\Delta\delta_2$, $3\pi/2+\Delta\delta_3$ にシフトした干渉縞画像の輝度値である。最後にフレネル演算を行い、計測対象の透過または反射光である物体光の振幅と位相分布を算出する。

3. 研究結果と考察

図1に示すような提案システムにサーモカメラを導入し、ナノオーダー熱変形計測システムを構築した。測定物体はUSBメモリのチップであり、物体の写真を図2に示す。データをUSBメモリに書き込み・書き出しをする際に、チップ部分が発熱し、構成要素である半導体材料が膨張する。本計測実験で用いたレーザーの波長は532 nm であり、物体からカメラまでの距離は301 mm とした。カメラの画素サイズ3.45 μm であり、記録スピードは毎秒20 コマに設定した。

図2. 測定対象の写真

図3. 実験結果

データ通信によりサーモカメラで撮影された USB メモリ温度変化の熱画像を図 3 (a)-(d)に示し、位相シフトデジタルホログラフィにより得られた位相差画像を図 3 (f)-(h)に示す。図 3 (e)はデータを USB メモリに書き込み・書き出しをする前の位相分布である。位相差画像 から明暗変化の縞が表され、物体の奥行方向(z 方向)の面外変位量を算出できる。明暗変化の1周期の変形量は用いたレーザーの波長の半分の変位量に相当する。即ち、本システムにより物体のナノオーダー熱変形の動的計測を実現できることを示した。

4. まとめ

本稿では、位相シフトデジタルホログラフィとモアレ縞解析法を融合することにより、 高精度な3次元変形計測を実現した光計測システムを紹介した。4ステップ位相シフトデジ タルホログラフィを例として、提案法のアルゴリズムを説明し、電子デバイスの熱変形計 測への応用の有効性を示した。位相シフトデジタルホログラフィとモアレ縞計測法を融合 することにより、位相シフトデジタルホログラフィの再生像の画質を大幅に向上できるこ とを確認できた。本技術により高精度な3次元変形計測への応用が可能であり、各種合金材 料、基板、有機材料などの強度や弾性などの力学特性の評価や熱変形などの分野での利用 が期待される。

参考文献

- ¹ J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
- ² I. Yamaguchi and T. Zhang, Opt. Lett. 22, 1268 (1997).
- ³ P. Xia, Q. Wang, S. Ri, and H. Tsuda, Opt. Lett. 42, 4954 (2017).
- ⁴ P. Xia, Q. Wang, S. Ri, and H. Tsuda, Opt Express 26, 12594 (2018).
- ⁵ S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, Exp. Mech. 52, 331 (2012).
- ⁶ S. Ri, and T. Muramatsu, Appl. Opt. 51, 3214 (2012).

デジタルホログラフィを用いた 高精度面外変位計測

非破壊計測研究グループ 計量標準総合センター 分析計測標準研究部門

3.高精度位相シフトデジタルホログラフィ&面外変位計測

4.まとめ

2.デジタルホログラフィ

1.研究背景

▶ 発表概要

夏鵬、李志遠、遠山暢之

JASIS 2019

信頼性の確保 力学特性評価 … 完 吧 吧 Z.AIST

精密(ナノ・ミクロン) 計測が必要

全視野

チップ&基板

変形

> 機械的走査が必要 > 物体の3次元動画像計測が極めて困難

クラック せずな

左が田の田原本本教教 / のませるのの日 **JASIS 2019**

▼デジタルホログラフィ (Digital Holography: DH)

AFM,共焦点顕微鏡, 電子線顕微鏡, レ一圹走査型形状計測装置,etc.

JASIS 2019

3.高精度位相シフトデジタルホログラフィ&面外変位計測

4.まとめ

2.デジタルホログラフィ

1.研究背景

▶ 発表概要

左が田の田原本本教教 / のませるのの日

JASIS 2019

→ 校正型高精度位相シフトDH

P. Xia, et al., Opt. Lett., 42.4954 (2017).

BS:ビームスプリッタ
し:レンズ
のBが地レンズ
のBが地レンズ
M:ミラー
BS: こ カメラ1

M:ミラー
BS: こ カメラ1

PZT

BS

Ы

Laser

CCD

物体光

 $I(-3 \pi/2)$

 $I(-\pi)$

 $I(-\pi/2)$

(0)

▶ 先行技術の問題点、研究目的

計測対象●

高精度、低コスト

・ 位相シフト誤差の問題を解決・ ピエゾ素子の高精度動作が不要

ELECTRICA 機構技術服合研究所

JASIS 2019

再生像の画質が劣化し、計測精度が落ちる 目的 モアレ縞解析を融合した高精度3次元計測システムを開発する (位相ずれ量を正確に検出し、計測精度を向上させる)

 $U(x,y) = \frac{1}{4U_v^*} \left\{ I(x,y,0) - I(x,y;-\pi) + j [I(x,y;-3\pi/2) - I(x,y;-\pi/2)] \right\}$

微動ミラー

例:光源波長:532nm; 移動量: N/8 (66.5nm) レーザー光源、記録環境などの不安定

問題点

ピエゾ素子の応答が非線形、

▼単一カメラを用いた校正型高精度位相シフトDH

ZA ALIST

★ まとめ

従来法の位相シフトDH計測システムの課題 位相シフト装置の精密な制御が困難→再生像の画質が劣化し、計測精度が悪い

・位相シフト量を計測するためにカメラを1台追加した光学計測システムを設計・校正用の干渉縞にモアレ縞解析を適用し、高精度に位相シフト量を算出

ナノメートルオーダーの高精度位相シフトDH計測システムを実現

→ 電子デバイスの熱変形計測に適用

開発した2台のカメラを用いた校正型DH計測システムの課題 2台のカメラを厳密に同期させる必要があり、画像データ量が多く、記録速度が遅い

・1つのイメージセンサに像再生用のホログラムと校正用の干渉縞を同時記録する光学計測システムを設計

単一カメラからなる安価でコンパクトで高精度な位相シフトDH計測システムを実現 →生体細胞3次元計測に適用

阿尔西印度斯科斯斯中国

JASIS 2019

16

短パルスレーザーによる加工技術の産業応用

放射線イメージング計測研究グループ 田中 真人 1、澁谷 達則、小川 博嗣 1 佐藤 大輔、馬場 大輔、安崎 利明、三浦 永祐 1、藤原 健、黒田 隆之助 1 X線・陽電子計測研究グループ O'Rourke Brian 1、大島 永康 1 早稲田大学 寺澤 英知 1 牛窪 大樹 1

先端オペランド計測技術オープンイノベーションラボラトリ 1 盛合 靖章

要旨

レーザー加工は近年様々な分野で利用が進められている。特にパルス幅が 100 フェムト秒程度と非常に短い超短パルスレーザーを用いた加工技術は、従来のレーザー加工よりも高品質な加工が可能になると期待されている。本グループは超短パルスレーザー加工の推進を目的として、超短パルスレーザー加工システムの構築、加工した材料の分析評価技術の開発、ならびに産業ニーズ調査結果等を基にした各種材料のレーザー加工技術開発を進めており、その現状に関して報告する。

1. はじめに

レーザーを使った材料加工技術は、そのデジタル制御の容易さや金型を使わないために 多品種・小ロット加工が容易などのメリットから、重要な加工ツールと注目されている。 レーザー加工では材料や加工方法(穴あけなど)に対して最適化すべき様々なレーザー加 工条件(例えば波長やパルス幅など)が存在するが、その最適化ができれば再現性の高い 加工が容易に可能である。レーザー加工条件が最適化できれば、理想的には加工の自動化 などが可能になるため、将来的な人材・技術不足を補完することができる。このようにレ ーザー加工は次世代のものづくりを支える重要技術である。

加工機器の市場は全世界で年間 10 兆円近いが、その規模は年々減少している。そのなかでレーザー加工機市場はそのシェアだけでなく市場規模自体も年々増加しており、世界的に見てもレーザー加工が注目されているのが分かる。

様々なレーザーを用いた加工技術の中で、我々は特にフェムト秒オーダーの超短パルスレーザーに注目している。従来のレーザー加工は高出力な連続光源などを用いた切断や溶接などに広く使われている。このようなレーザーによる加工は、レーザー光のエネルギーを最終的に熱に変えて加工する熱的加工である。この場合、加工部位周辺の熱による影響を避けるのが困難である。

超短パルスレーザーを用いた加工は、現状のレーザー加工技術でも加工困難な材料への応用、更には加工部位以外での材料損傷が少ない非熱的加工に有用と考えられている。またレーザー波長として短波長の紫外線などを用いることで、比較的少ないレーザーパワーによる高効率な加工や、集光径を小さくすることによるより微細な加工が可能になると考えられる。しかし、これらのレーザーで加工に適したものはまだ少なく、またその加工技術の知見も少ない。特に超短パルスレーザーを用いたレーザー加工は導入コストの高さや

加工条件の複雑さなどから、その産業利用の閾値が高いことも問題となっている。

上述のレーザー加工の問題点等を解決すべく、NEDO「高輝度・高効率次世代レーザー技術開発」プロジェクト¹(平成 28 年~令和 2 年予定)では、これまでにない高輝度(高出力・高ビーム品質)かつ高効率なレーザー技術、及びそれを用いたレーザー加工技術を開発し、社会実装を進めることで、わが国のものづくり産業の競争力強化を図るために、短パルス深紫外レーザーやハイパワーレーザーを用いたレーザー加工機の開発、レーザー加工メカニズムの解明、レーザー加工プラットフォームやデータベースの構築等を行っている。当グループは当該プロジェクトにおいて、主に超短パルスレーザー等を駆使した実用材料の加工技術や加工評価技術の開発とレーザー加工データベースの構築の一部を担当している。

本報告書では当該プロジェクトでの成果を中心に、本グループのレーザー加工に関する 研究開発現況を述べる。

2. 超短パルスレーザーによる加工システム群の構築

加工用レーザーとしてチタンサファイア超短パルスレーザー(パルス幅 100 フェムト秒以下)等を用いた加工システム群の構築を進めている(図 1 参照)。まず基本波長 800 nm (最大レーザーパワー3W)のチタンサファイアレーザーを用いて、非線形結晶を用いた波長変換により、更に可視紫外域の 3 波長(400、266、200 nm)を選択でき、かつパルス幅を 50~2000 フェムト秒間で、パルスの繰り返し周波数を 1~1000 ヘルツ間で変化レーザー加工システムを構築した。また赤外領域で波長可変な加工が可能なレーザー加工システムの構築を進めている。波長 355 nm と 266 nm のナノ秒パルスレーザー加工機も有しており、パルス幅を大きく変えた加工条件での比較が可能である。これらレーザー加工システム群は主に東京大学柏 I キャンパス内にある産総研東京大学連携研究サイト(先端オペランド計測技術オープンイノベーションラボラトリ)にて整備している。

図1. 構築を進めているレーザー加工装置群等の写真

3. 超短パルスレーザーを用いた材料加工技術の開発

これらレーザー加工システムおよび X 線自由電子レーザー (SACLA) 等を用いて、ガラス・プラスチック・セラミクス・金属などの様々な材料のレーザー加工技術の開発を進めている ²⁻⁵。この時、企業ヒアリング等から抽出された産業ニーズ等を元に、材料や加工条件を選択している。また原子間力顕微鏡、レーザー顕微鏡、偏光顕微鏡、ラマン顕微鏡、赤外顕微鏡、真空紫外エリプソメトリ分光装置などの様々な分析・観察装置群も同様に産総研東京大学連携研究サイト (一部は産総研つくばセンター) に整備することで、光吸収などの材料特性の分析、レーザー加工、レーザー加工後の評価などの一連のスキームをワンストップ化して進めている。

図 2 にそのレーザー加工の一例として、ポリ乳酸樹脂の波長 266 nm のフェムト秒レーザーとナノ秒レーザーでの加工結果を示す。4 照射したレーザーパワーはほぼ同じである。ポリ乳酸は生分解性プラスチックとして知られており、医療用のステントなどとしても応用が進められている材料であるが、熱に比較的弱いために従来のレーザーでは加工が難しい材料である。まず本樹脂の研磨と透過吸収スペクトルを計測し、なるべく表面ラフネスの小さい試料を準備するとともに、本材料が波長 250 nm 付近に吸収端をもつことを確認した。照射波長としては吸収端に近い 266 nm を選択した。

本材料は熱に弱いために、図 2 右に示すナノ秒レーザーによる加工痕には、熱溶融によると思われる加工穴の閉塞が見られる。それに対して、図 2 左に示すフェムト秒レーザーによる加工痕には熱溶融の形跡が殆ど見られず、直径 20 μm 程度の高精細な穴加工に成功した。このようにフェムト秒レーザーを用いることで、非熱的な加工がなされたことが分かった。またこの 2 つのパルス幅でレーザーのフルエンスを変えた照射を行い、加工穴径の変化を分析することから、レーザー加工の閾値の決定を行ったところ、フェムト秒レーザーはナノ秒レーザーと比較して、加工閾値が 20 分の 1 程度と非常に小さいことが分かった。

30 µm

図 2. ポリ乳酸樹脂の波長 266 nm の短パルスレーザーによる加工結果の一例(レーザー顕微鏡画像) 3 : (a) パルス幅 200 フェムト秒、 $30\,\mu J/$ パルス、(b) パルス幅 $8\,$ ナノ秒、 $30\,\mu J/$ パルス、の結果。共に $1000\,$ パルスを照射した。

また工業ガラスの貫通穴加工は高密度電子回路基板等としての応用が進められており、レーザーを用いることでより微細な穴加工などが期待される。我々はまず基本的なガラス材料である合成石英のフェムト秒レーザー等による加工技術の開発^{2,3}を進めており、その結果を工業ガラスにも展開している。図3にフェムト秒レーザー照射と化学エッチングによって合成石英に穴加工を行った例を示す。レーザー照射により表面改質を行うことで、エッチング速度を変化させることで、直径20 μm で500 μm 程度の穴加工に成功している。

他にも高分子材料の表面加工、多層膜の剥離、金属等の複合材料の穴加工、樹脂等への 撥水・親水性の付与などのレーザー加工技術の開発を進めている。

図 3. 石英試料への短パルスレーザー加工ならびにその後の化学エッチングによる穴加工結果の一例。左図では直径 20 μm 程度の穴加工に成功している。

4. まとめ

このようにフェムト秒レーザーなどを用いた紫外〜近赤外域のレーザー加工システム の構築や分析装置の整備を行い、ポリ乳酸や合成石英をはじめとする様々な材料のレーザ 一加工技術開発を進めている。レーザー加工やこれら技術開発にご興味のある方はご一報 いただければ幸いである。

これらの成果の多くは、NEDO事業「高輝度・高効率次世代レーザー技術開発」において得られたものである。ここにプロジェクト関係者、ニーズ調査等にご協力いただいた皆様方に深謝する。本プロジェクトにご興味のある方は、「高効率レーザープロセッシング推進コンソーシアム(TACMI)⁶」(設立:東京大学)もご参考にされたい。2019年9月現在で本コンソーシアムには、50以上の法人が参加しており、一般会員は無料で参加ができる。

¹ https://www.nedo.go.jp/activities/ZZJP 100124.html

² T. Shibuya, et al, Appl. Phys. Lett. 113, 171902 (2018).

³ 産総研プレスリリース, "極端紫外線レーザーにより熱影響が極めて少ない材料加工を実現",2018/10/23, https://www.aist.go.jp/aist j/press release/pr2018/pr20181023/pr20181023.html

⁴ T. Shibuya, D. Satoh, M. Tanaka, H. Ogawa, and R. Kuroda, Jpn. J. Appl. Phys. 58, SIIA02 (2019).

⁵小川博嗣、他、"レーザー加工材料の特性評価技術の開発",本報告集

⁶ http://www.utripl.u-tokyo.ac.jp/tacmi/

1. 摩総研

NMIS

分析計准標準研究部門 Researth Institute for Measurement and Arabytical Instrumentation

RIPIN

短パルスレーザーによる 加工技術の産業応用

永祐1.2, 藤原 健1, O'Rourke Brian 2.4, 大島 永康 2.4 真人1.2, 黑田 隆之助1.2, 達則1, 小川 博嗣1.2, 佐藤 大輔1.2 盛合 靖章2, 大輔1 安崎 利明1, 寺澤 英知2.3, 牛窪 大樹2.3, **海馬三谷鳴川**

- 1: 放射線イメージング計測研究グループ、2: 先端オペランド計測技術オープンイノペーションラボラトリ、3: 早稲田大学4: X線・陽電子計測研究グループ

((NEDO () TACMI

国立研究開発法人 產業技術総合研究所

世代レーザー技術開発)、産総研・東大先端オペランド計測技術 分析計測標準研究部門、NEDOプロジェクト(高輝度・高効率次 ナープンインベーショソレボラトリ(オペランドOIL、東大柏キャン パス内に設置)の連携の元で進めています。 研究体制

4 库纸印

アウトレイン

・各種材料(ガラス、樹脂、金属等) の加工と評価、産学連携

(NEDO

国立研究開発法人 產業技術総合研究別

4 麻然班

従来加工(機械加工)と比較した、

→マンパワー小(熟練工の不要化)、自動化など 加工条件のデジタル制御が容易 0

〇 小ロット・多品種加工への適用(金型不要など)

次世代ものづくりを支える重要な加工技術

国立研究開発法人 産業技術総合研究所

化 麻然距

フーザー加工

(NEDO

これまでにない高輝度(高出力・高ヒーム品質)かつ高効率なレーザー技術、 及びそれを用いたレーザー加工技術を開発し、社会実装を進めることで、わが 国のものづくり産業の競争力強化を図る。

サイバーシステム

■ Sett NEDO: 高輝度・高効率次世代レーザー技術開発

 PL: 小林洋平(東大)

 SPL: 田丸博晴(東大)

 SPL: 黒田隆之助(AIST)

→NEDO「高輝度・高効率次世代レーザー技術開発」 重要な加工技術だが、多くの課題も存在

- ・従来レーザー加工・・・マクロ加工(金属切断、溶接など)
 - →近赤外域、高出力連続光源 →熱的加工
- ・次世代レーザー加工・・・ミクロ加工(微細加工、表面制御など) →値パルス(フェムト秒~ピコ秒) →非戦的加工 短波長(紫外など)→高効率、微縮化

→高コストであり、条件探索が困難。 ★様々なパラメータの最適化が重要 初期利用のしきい値高い

→ユーザー利用のための加エプラットフォームや

加工データベースの構築

(Focus NEDO No.68より) CFRPの削りしるの 少ない加工例

産総研も参画 加工・分布ブラットフォームや 加工データベースの推察など 「加工データベースの推察など

THE PERSON O CONTRACTOR 国立研究開発法人 產業技術総合研究所

[L] Society 5.0社会

. 3

国立研究開発法人 産業技術総合研究所

超短 パルスレーザー加エシステムの開発

NEDO

本研究グループの取り組み Rent

医核研

・紫外~近赤外域の波長選択 フーザー加エシステムの構築

・パルス幅 最短50-2000フェムト秒 ・パルス繰り返し 1-1000 Hz 3000

1400

100

20

(アルパルス)

パワー

波長(nm) 200 266

One-box Ti:Sapphire-based oscillator and pump lasers

分析・評価手法:各種顕微鏡(ラマン、赤外、AFM、レーザー等)

材料分析・フーザー加工・加工評価のワンストップ化

最短波長200nm、パルス幅100フェムト秒程度の

ワーザー加工装置の実用化

超短パルスレーザー加エシステムの開発

各種分光(エリプン、可視~真空紫外吸収等)

陽電子消滅分光、X線CT など

Libra, Coherent (米国) amplifier with integrated

紫外

800

石英の微細加工例

生体・医療材料、ガラス、樹脂、セラミックス、金属等の

材料種を問わない加工技術開発

国立研究開発法人 産業技術総合研究所

ニーズの高い材料・加工の選択

産業界とのヒアリング等による

(800 nm, 1 shot, × 100レンズ)

他にも、

フーザー等が利用回 赤外の100フェムト秒 -10ナノ秒、266nmの フーザー整備中 2 µm

国立研究開発法人 產業技術総合研究所

90

超短パルスレーザー加エシステムの開発

これらレーザー加エシステムと一部分析装置は、産総研柏センター(東大柏キャンパス内、先端オペランド計測技術OIL)に設置

国立研究開発法人 産業技術総合研究所

材料分析・フーザー加工・加工評価のワンストップ化

・・・損傷閾値の変化 ポリ乳酸樹脂のレーザー加工結果

200フェムト秒 266nmレーザー 1shot 8

266nm, 200fs

250

8ナノ秒 266nmレーザー 1shot

Beam waist, is = 6.637 µm f_th_fs = 0.77 [J/cm²] 2

0.77 J/cm²

ŝ

8 yues [hus]

ġ

損傷閾値

8

パルス幅200フェムト秒の損傷閾値 →20倍小さい T. Shibuya, et al., Jpn. J. Appl. Phys., 58, SIIA02 (2019).

本数分析・フーザー 加工・ 加工 評価の Dンストップ 化

実施例:ポリ乳酸樹脂・・・代表的生分解性プラスチック ・ステントなどの生体留置材料などとしてもニーズ・レーザー加工しきい値等のパルス幅変化を調べた

加工後評価

フーボーゼド

加工配分析

AFM、フーザー顕微鏡なが による加工痕の分析

266nmレーギ ・200フェムト秒

266nmレーザー

紫外吸収等による材料評価

国立研究開発法人 產業技術総合研究所

材料分析・フーザー加工・加工評価のワンストップ化

8ナノ秒 266nmレーザー ···加工形状 ポリ乳酸樹脂のレーザー加工結果 200フェムト秒 266nmレーザ

1000shot 30µJ/pulse

1000shot 20µJ/pulse

ナノ砂加工 シ熱溶融によって加工痕が塞がれたと考えられる →フェムト秒により、熱に弱い樹脂材料の加工も可能に フェムト秒加工→周囲への影響の少ない非熱的加工

SPENISOR SERVICES ALL MORAL MEDIA

T. Shibuya, et al., Jpn. J. Appl. Phys., 58, SIIA02 (2019).

杉 対 か か ・ フ ー ガ ー 加 エ ・ 加 工 評 価 の ワ ン ス トップ 化

実施例:石英ガラス・・・基本的なガラス材料

・工業ガラスの貫通穴開け加工は、回路基板等としてニーズ高い ・レーザー加工しきい値等の波長変化を調べた

フーボーゼド ・70フェムト秒 加工部分析 真空紫外吸収、

AFM、SEM、フーザー関銜總 などによる加工痕の分析

800nmレーザー 13.5nmレーザ·

・70フェムト秒 (SACLA BL1)

赤外分光による 材料評価

(卜箔物)

国立研究開発法人 産業技術総合研究所

杉萃分析・フーチー加工・加工評価のワンストップ化

石英ガラスのレーザー加工結果 ・・・加工形状

holise propagation

13.5nm 照射はクラックのない

加工ができている

5µm

出口に直径約5mm (約3000パルスで) 0.5mm厚を貫通 の徴雒孔形成 照射方向

T. Shibuya et al., Appl. Phys. Lett., 113, 171902 (2018).
 プレス発表 2018/10/23
 "極端紫外線レーザーにより熱影響が極めて少ない材料加工を実現"

ニーズの高い材料・加工の選択 産業界とのヒアリング等による

〇工業ガラスの穴開け加工等は、 エ業ガラス等へ展開 回路基板等としてニーズ高い →石英などで得た知見を

他にも多くの事例

○金属等の複合材料の穴加工 ○樹脂等への撥水・親水性の付与 〇多層膜の剥離

〇高分子材料の表面加工

レーザー加工にご興味の方の ご連絡をお待ちしております

スーパーエンプラ(PEEK)への 親水性付与(代替骨材料)

国立研究開発法人 産業技術総合研究別

材料分析・フーザー加工・加工評価のワンストップ化

実施例:ポリジメチルシロキサン樹脂・

顕微ラマン分析より、レーザー照射による主鎖切断が起き、 マイクロ流体デバイス等に利用されている高分子材料 されてSiナノ結晶が生成したことがわかった

加工後評価 800nmレーキ ・100フェムト秒

照射領域 ナノSi結晶 照射循域 500 Raman shift (cm-1) Si-O-Si ġ 400 £ 访 끙 Intensity (a.u.)

8

1 库纸班

謝辞

超短パルスレーザーによるレーザー加エシステムの開発 ・波長域200-800nm、最短パルス幅50フェムト秒程度の

・レーザー加工:次世代加工を支える重要技術

まため

医条件

行いました。ここに関係各位のご協力・ご尽 高効率次世代レーザー技術開発"によって 本研究の一部は、NEDO委託事業"高輝度 カに深く感謝申し上げます。

・各種顕微鏡(ラマン、赤外、AFM等)、分光装置による評価

材料分析・フーザー加工・加工評価のワンストップ化 ・ポリ乳酸樹脂や石英ガラスなどの高品位加工

レーザー加工装置の実用化

エ業ガラスへの貫通穴形成など多くの材料・加工への展開

ニーズの高い材料・加工の選択

レーザー加工にご興味の方のご連絡をお待ちしております

国立研究開発法人 産業技術総合研究所

弊所各制度やTACMIコンソーシアムでの連携活動

国立研究開発法人 產業技術総合研究所

93

ナノ粒子サイズ分布計測における原子間力顕微鏡の役割

ナノ顕微計測研究グループ 重藤 知夫

要旨

ナノ粒子サイズ分布計測に顕微鏡法を用いる際には、ナノ粒子を高密度・均一・バラバラに 基板上に展開する手法が必須となる。本発表では、そのために開発した二つの手法を紹介し た。また、顕微鏡ならではのデータを提供するためには、単なる粒径計測に留まらない粒子 形状分布計測を行うことが有効である。本報告では、炭酸カルシウムナノ粒子を例に、原子間 力顕微鏡による実用的な三次元計測の技術開発を紹介した。

1. はじめに

ナノ粒子製品のサイズ分布計測は、物性制御と規制対応の両面で、大変重要になってきている。産業技術総合研究所は、(株)島津製作所・日本電子(株)・(株)堀場製作所・(株)日立外テクノロジーズの国内計測機器メーカー4 社とともに、「産業利用を支える計測コンソーシアム」(Consortium for Measurement Solutions for Industrual Use; COMS)を立ち上げ、ナノ粒子の粒径計測を、複数の計測法を組み合わせて追及してきた。計測手法により全く異なる結果がもたらされることが多いナノ粒子粒径分布計測に、信頼すべき計測法を確立することがその目的である。

粒径分布の広いナノ粒子試料で粒径計測を行うと、「大粒子による小粒子の隠蔽」が起こる。 顕微鏡観察の場合は物理的隠蔽(大粒子の下に小粒子が隠れている)であるし、動的光散乱実 験の場合には信号強度による隠蔽(小粒子の信号寄与が大粒子にくらべてあまりに小さくて計測 できない)である。このため、COMSにおいては、複合計測システムの中核に分級機を置き、分級 により単分散化した試料の粒径を計測して、最後に再構成により元分布を推定する手法を重視し た。ただし、本報告ではその詳細には立ち入らない。

ナノ粒子粒径分布計測には、比表面積測定法 (BET) や動的光散乱法 (DLS) が多く用いられる。加えて、粒子形状や凝集状態を確認するために、電子顕微鏡 (TEM, SEM) で観察することも多い。

BET や DLS は膨大な数のナノ粒子に作用した信号から粒径を算出する手法であり、「アンサンブル法」と呼べる。これに対して、電子顕微鏡や、ここで扱う原子間力顕微鏡 (AFM) は、個々の粒子を一つずつ測長する手法であり、「カウンティング法」といえる。後者で何万個もの粒子のサイズの統計を取るためには膨大な計測と計算が必要になるところ、前者では短時間の計測で済む。アンサンブル法が好まれるのは当然である。一方で、その過程にはブラックボックス的な面があり、粒子を直接顕微鏡で観察して状況を把握したいという要求はつきない。

本報告では、カウンティング法である AFM で十分精密なナノ粒子サイズ分布計測を実施する

ために行った技術開発と、かなりな手間をかけてそのような計測を行う意味をお伝えしたい。AFM によるサイズ分布計測により、アンサンブル法での計測結果の信頼性を上げ、さらに新規の情報 を付け加えることができるのである。

2. カウンティング法(顕微鏡法)の問題点

計測が遅いことに加えて、顕微鏡法には「視野の代表性」の問題がある。顕微鏡の視野はごく狭い。その中のナノ粒子のサイズ分布が元試料のものと一致することが保証されなければ、顕微鏡法での計測結果から求めた統計値に意味はない。

さらに、粒子の接触も問題だ。積層が起こると下の粒子が見えず、数え残しが統計に影響する。 水平方向の接触の場合でも、粒界の特定の困難等から、粒子認識や水平サイズ推定に誤差を 生じる。

逆に言えば、こうした限界から、顕微鏡法のデータから統計値を算出することはあまり行われず、 主として「こんな粒子があった」といった「エピソード的」な利用にとどまってきたと考えられる。

この限界を乗り超えるには、ナノ粒子を均一かつバラバラに基板上に展開する手法が必要となる。ちなみに、なんの工夫もなくナノ粒子懸濁液を基板上に滴下して乾燥させると、液滴の周辺部のナノ粒子濃度が液滴の乾燥とともに高くなる現象が起こる。結果として、密集、時には積層したナノ粒子のリング(コーヒーリング)が生成する。これでは均一性と非接触の両方が満たされない。

3. サンドイッチ凍結乾燥法と基板化学修飾法

「ナノ粒子を均一かつバラバラに基板上に展開する手法」ですぐに思いつくのは凍結乾燥法 (フリーズドライ法)である。ナノ粒子は懸濁液中では静電相互作用等でバラバラになっているのだから、その状況を凍結してから水分を昇華させれば基板上にバラバラに落ちるだろう、というわけである。しかし、懸濁液の凍結時にナノ粒子が非常に速く凝集するため、低温の基板に懸濁液を滴下して凍結させたくらいでは、「μm サイズの凝集体がバラバラに分散した基板展開試料」になってしまう。

その対策として我々が提案してきた手法が「サンドイッチ凍結乾燥法」(図 1)である¹。 懸濁液をシリコン基板対にはさんで薄膜にして、そのサンドイッチ構造の上下に低熱源を接触させることで熱伝導や潜熱による影響を最小限とし、凝集する間もなく凍結させる方法である。この方法は粒子の化学的性質を利用しない純物理的なものなので、 懸濁液をつくれる幅広いナノ粒子を基板展開できる。

他の基板展開法としては、(株)日立ハイテクノロジーズが開発した「基板化学修飾法」がある。 表面を化学修飾したシリコン基板を何種類か用意してナノ粒子懸濁液を滴下すると、粒子の化学 的性質によっていずれかの基板上で粒子がトラップされ、バラバラに展開できる、というものである。 この手法では乾燥時に濃縮が行われるので、サンドイッチ凍結乾燥法では展開が難しい低濃度 懸濁液の展開も行える。一方で、乾燥最終段階で凝集や「分散媒残渣のまとわりつき」起こりやすいという問題もある。本報告では、サンドイッチ凍結乾燥法での展開試料を主に用いた。

図 1. サンドイッチ凍結乾燥法の手順 (1) 微量の懸濁液を滴下 (2) シリコン基板で挟んで薄膜に (3)-80 ℃の銅板で挟んで瞬凍 (4) 剥がして真空槽へ

4. 探針サイズ補正による三次元形状計測

AFM は基本的に高さ計測機であり、ナノ粒子の高さは精密に計測できるが、粒子の水平サイズは探針の太さだけ太って計測してしまう。しかも探針太さは計測中に変化する。そのため、AFMで粒子サイズを計測する場合、高さのみをデータとして用い、水平サイズは参考にとどめることが多い。粒子が球形であることが分かっているなら、高さがそのまま粒径になるので何ら問題はない。しかし、工業的実用粒子の多くは非球形であり、基板上におかれた粒子の高さ情報だけから分かる情報には限界がある。

これに対して電子顕微鏡は粒子の水平サイズを精密に計測できる手法である。一方、高さについては、ステレオ視等を用いて測れないわけではないが、手間はかかるし精度も落ちる。ということで、「AFMとSEMで同一視野を観察し、前者から粒子高さを、後者から水平サイズを取得する」のが、完全な三次元粒子形状を測定する一つの方法となる。この場合、ふたつの顕微鏡法の統合データがナノ粒子のサイズ分布を与え、DLS等のアンサンブル法の結果と比較できる。両者に矛盾がなければ、アンサンブル法の測定結果の確度を上げることになる。矛盾があれば、アンサンブル法では計測困難な粒子三次元形状の分布にその原因を求めて検討することが可能となる。

さらに、粒子水平サイズの AFM 測定値への探針太さの影響を適切に補正することで、AFM だけを用いて三次元計測を行うこともできる。探針形状の寄与の補正には「探針形状のブラインド推定による表面再構成」という原理主義的手法がすでにあるが、手軽に使えるものではなく、着目するサイズ領域での精度にも問題があり、あまり実用されてこなかった。本報告では、ナノ粒子の三次元形状計測に限っては必要な精度を提供する簡便な補正法を紹介する。具体的には、サンドイッチ凍結乾燥法で展開したポリスチレンラテックス (PSL) 3 峰試料(25,50,100 nm 径)を AFM計測し、PSL が真球になるように各高さでの水平補正の値を決定する、というものである。この方法で炭酸カルシウムナノ粒子の三次元サイズ分布を求めた例を図 2 に示す。

図 2. (左) 炭酸カルシウムナノ粒子(白石工業株式会社提供)をサンドイッチ凍結乾燥 法で展開した試料の AFM 形状像 (右) 直方体近似による各特徴長さ(最短辺、次短辺、 最長辺) ヒストグラム

5. AFM による高さ計測と SEM による水平サイズ計測の統合

「AFM と SEM で同一視野を観察し、前者から粒子高さを、後者から水平サイズを取得する」のが、粒子の三次元形状計測のもうひとつの有力な手法であることは前節冒頭で述べた。両者はシリコン基板のような一般的な基板を共通して観察できるから、位置合わせさえできればこれは可能となる。すでに(株)日立ハイテクノロジーズよりマーカー付きの試料ホルダーが発売されており、数 μm の精度で位置合わせが可能である。炭酸カルシウム化学修飾基板展開試料で、SEM とAFM の同一視野計測を行った例を図 3 に示す。

試料提供:白石工業(株)

資料提供: (株) 日立ハイテクノロジーズ

図 3. 基板化学修飾法で展開した炭酸カルシウムナノ粒子のほぼ同一視野を SEM と AFM で観察した例。位置合わせは日立ハイテクノロジーズ製の試料ホルダーによる。

6. まとめ

ナノ粒子サイズ分布計測において、我々が開発したサンドイッチ凍結乾燥法や基板化学修飾 法のような適切な基板展開法を用いれば、顕微鏡法でも統計的に意味のある計測ができる。さら に、簡易探針径補正 AFM 法や、AFM と SEM の組み合わせ法によって、顕微鏡以外の計測法 では難しい、粒子の三次元形状分布の計測も可能となる。

謝辞:本研究の主要部分は、産業利用を支える計測ソリューションコンソーシアム(COMS)による成果です。炭酸カルシウム試料は、(株)白石工業から提供いただきました。金ナノロッド分散液試料および炭酸カルシウム分散液試料は、産業技術総合研究所物質計測標準研究部門の加藤晴久主任研究員に調整いただいたものです。AFM 計測データと解析結果の一部は、(株)日立ハイテクノロジーズとの共同研究によるものです。以上、感謝して記します。

¹ T. Sigehuzi, J. Chem. Phys. **147**, 08201 (2017).

化麻然研

産総研 分析計測標準研究部門 第5回シンポジウム [技術開発を支援する計測・分析ソリューション]

ノ粒子サイズ分布計測における 原子間力顕微鏡の役割

2019年9月6日

産業技術総合研究所 分析計測標準研究部門 ナノ顕微計測研究グループ 重藤知夫

- ナノ粒子計測の必要性と課題
- 1.2.6.4.7.0
- を業利用を支える計しになる。 建業利用を支える計測ソリューションコンソーシアム (COMS) 顕微鏡法によるナノ粘子サイズ計測の課題と可能性 ナノ粒子の基板展開 (サンドイッチ凍結乾燥法と基板化学修飾法) 原子間力顕微鏡による3次元計測
- SEM/AFM座標 リンケージ

国立研究開発法人 產業技術総合研究所

4 座総印

島津製作所+日本電子+堀場製作所 +日立ハイテクノロジーズ+産総研 (+白石工業等の材料メーカー) 産業利用を支える計測ソリューションコンソーシアム (COMS)

次頁以降で示すデータは、(一部 の例外を除き)COMSの共同研究 の成果です。

COMS: Consortium for Measurement Solutions for Industrial Use

COMSウェブページより

ICP MS

SAXS

AFM

国立研究開発法人 産業技術総合研究所

一种然田

- ナノ粒子: 「個数基準で半分以上の粒子の粒径が1nm~100nm」などの定義 ・ 健康被害の不安 (アスベスト等の経験) → 規制の動き
 - - ・ 粒子サイズで物性制御?

規制対応のためにも物性制御のためも、信頼できるサイズ分布計測技術が必要

分級技術を中核とするナノ数子計業法の採用

解決すべき技術的問題 (1) 微小粒子の隠蔽

機関を合む個人に行うり 200 nm機械の機能に除め 20 nm機械が施設したこ 報向針的な数や若平の個人に

新男子―かの会長により回しい会保分名を再業

(2) 測定法による結果の差異

国立研究開発法人 摩莱技術総合研究所

COMSウェブページより

医核研

顕微鏡法によるナノ粒子サイズ分布計測の課題

多数の粒子を一度に計測する散乱法や比表 面積法とくらべ、顕微鏡法は

- 粒子を一つづつ測長するので解析も遅い 頑張っても大した粒子数にならない
- 粒子が積み重なると下の粒子が見えない
- 粒子の水平接触も水平サイズ誤差の原因 →バラバラで均一な基板展開法が必要 現在の視野は特殊な点?
- 一方、形状が分かるのは顕微鏡ならでは→ 「粒径」以外のサイズ情報の活用

視野の代表性を担保できる 顕微鏡法に求められるもの 基板展開法 Θ

形状計測技術

(7)

国立研究開発法人 産業技術総合研究所

カンドイシド承結

凝集の暇もなく凍

基板展開法(1) サンドイッチ凍結乾燥法 凍結速度を十分に上げればよいのだから

医然班

多くのナノ粒子が、修飾基板 のどれかでトラップされる基板セット以外には特別な装

基板展開法(2) 適切な基板化学修飾による、ナノ粒子のトラップ

Au / Si+VTMS

PSL / Si+TMPT

乾燥時に濃縮されるので、凍 結乾燥法では展開不能な低濃 度懸濁液からも展開可能

置も不要

× 「ナノ液滴」乾燥時の凝集・ 隠蔽・分散剤まとわりつき

O SiO₂ / Si+VTMS

O Ag / Si+OH

AFM総提供: (株) 日立ハイテクノロジーズ

国立研究開発法人 産業技術総合研究所

長さ(nm) 資料提供: (株) 日立ハイテクノロジーズ

金ナノロッド試料提供:産総研加藤主任研究員

何が達成できたか と産総研

本研究の主要部分は、産業利用を支える計測ソリューションコンソーシアム(COMS)による成果です。 (株) 白石 炭酸カルシウム試料は、(株) 工業から提供いただきました。

金ナノロッド分散液試料および炭酸 カルシウム分散液試料は、産業技術 総合研究所物質計測標準研究部門の 加藤晴久主任研究員に調整いただい たものです。

AFM計測データと解析結果の一部 は、(株)日立ハイテクノロジーズ との共同研究によるものです。

以上、感謝して記します。

2 um

試料提供:白石工業(株)

2um

7r/l/45: 19425034p.rpd 3f./t 1: CaCO3,180418,A,OH,15

国立研究開発法人産業技術総合研究所

資料提供: (株) 日立ハイテクノロジーズ

4 産総研

→ ナノ粒子三次吊サイス統計 基板展開法 + 形状計測技術

国立研究開発法人 産業技術総合研究所

ポスター発表

レーザー加工材料の特性評価技術の開発

放射線イメージング計測研究グループ 小川 博嗣¹、澁谷 達則、佐藤 大輔¹ 安崎 利明、馬場 大輔、田中 真人¹、黒田 隆之助¹ 先端オペランド計測技術オープンイノベーションラボラトリ¹ 盛合 靖章

要旨

レーザー加工における材料の改質等の特性変化を評価する技術開発を行っている。 本稿では超短パルスレーザーを用いたポリマー材料加工での加工表面における化 学結合状態の変化についてラマン顕微鏡により解析した例について紹介する。

1. はじめに

レーザー加工は非接触なドライプロセスや難加工材の微細な加工が可能であるとともに、デジタル制御と親和性が高いなど既存の工作機械では困難な付加価値の高い加工やものづくりの自動化・効率化が図れる様々な特徴を有している。このようなメリットからものづくり産業に導入が進められ、世界のレーザー加工市場は年々増加しており、今後も拡大を続けると予想されている。「しかしながら、現状のレーザー加工では、レーザーパラメータと材料の組み合わせによっては加工部周辺に熱的な影響が発生する場合があり、微細な加工などの用途において品質の問題となる。高品質なレーザー加工を実現するためには、材料により加工特性が異なるため、各種材料に対して効率よく加工できるレーザーパラメータの探索が必要である。しかし、加工パラメータの組合せは膨大であるため、従来の経験と勘に頼った方法ではなく、計測評価を含む実験的手法や学理に基づくレーザー加工現象解明等により材料に応じて最適なパラメータの導出ができるようになることが期待されている。

我々は、短波長・超短パルスレーザーを用いた熱影響が少ない高品質な加工を目指した研究 ^{2,3} など実用材料の加工技術や加工評価技術等の研究開発を行っている。加工評価技術では、レーザー加工におけるレーザー照射条件(波長、パルス幅、エネルギー、繰り返し周波数等)の違いによる加工材料への照射影響を評価する手法を開発している。これらにより材料に対して最適なレーザー加工パラメータを決定する方法論を確立することに取り組んでいる。当グループでは、ラマン顕微鏡、赤外顕微鏡、エリプソメトリ等の分光手法やポンププローブ法による加工中のオペランド計測手法等を開発している。⁴ここでは、ラマン顕微鏡を用いたレーザー加工材料の改質等の特性変化についてポリマー材料のレーザー加工の解析を例に紹介する。

2. 研究方法

ポリマー材料にレーザー加工したサンプルをラマン顕微鏡により加工表面を観察し、レーザー照射によるポリマーの変質を評価した。レーザー加工は産総研東京大学連携研究サ

イト (千葉県柏市) に設置しているレーザー加工装置 (図 1) を用いて行い、チタンサファイアレーザーの基本波 (波長: 800 nm、パルス幅: 約70フェムト秒) を対物レンズにより試料表面で数 μm のビーム径に収束させ、XYZステージにより試料位置を調整しレーザー照射した。本装置では、パルスエネルギー3 mJ (基本波) の出力が可能なため高ピークフルエンスでの超短パルスレーザー加工や高調波を用いて紫外域での加工研究を行うことができる。

図1. 超短パルスレーザー加工装置の外観

ポリマー材料として工業やバイオ・医療材料として広く利用されている高分子材料のポリジメチルシロキサン(PDMS: $(C_2H_6OSi)_n$)を用いた。PDMSは Sylgard184(東レ・ダウコーニング製)の 2 液を混合し、真空中で脱気して気泡を除去した後、室温で硬化させてエラストマー試料を作成した。上記の PDMS 試料表面にレーザーの焦点を合わせてレーザー加工を行った(図 2)。

図 2. レーザー加工後の PDMS 試料

図3. ラマン顕微鏡装置

次にレーザー加工部周辺領域をラマン顕微鏡装置(図 3)の光学顕微鏡像をモニターして観察位置を調整し、PDMS の加工表面のラマンスペクトルを取得した。ラマン顕微鏡 (JASCO NRS-5500)の測定において、ポリマー試料にダメージを与えないように励起用の CW レーザー(波長 532 nm)の出力は $1\,\mathrm{mW}$ 以下に抑えて試料に照射し、収差補正型ツェルニーターナー配置モノクロメーター(焦点距離 $f=300\,\mathrm{mm}$ 、グレーティング $1800\,\mathrm{gr/mm}$)によりラマン分光を行った。

3. 研究結果と考察

PDMS 加工表面(レーザー照射領域)および加工の外側のレーザー未照射領域のラマンスペクトル例を図 4 に示す。レーザー未照射領域に存在するポリマー主鎖に由来する Si-O-Si のピーク(488 cm⁻¹付近)が、レーザー照射領域で減少するとともに、高波数側(516 cm⁻¹付近)にピークが出現している。またポリマー側鎖(Si-C)に由来するピーク強度(708

図 4. PDMS ラマンスペクトル (上:レーザー照射領域、下:未照射領域)

cm⁻¹付近)も同様に減少している。516 cm⁻¹付近のピークはナノ Si 結晶と帰属 ^{5.6} されていることから、レーザー照射により PDMS の主鎖および側鎖が切断されてできた Si 原子が凝集してナノ Si 結晶が形成されたと解釈できる。このように加工部周辺の化学結合状態の変化を計測することにより、レーザー加工におけるポリマーの改質について知見が得られた。

4. まとめ

近赤外域の超短パルスレーザー加工による PDMS 試料への加工影響を評価するためラマン顕微鏡により分析を行った。加工表面では、PDMS のポリマー主鎖および側鎖が切断されるとともにナノ Si 結晶が形成されることが示唆され、レーザー加工における化学結合状態の変化を評価できることが分かった。今後は、当計測手法を用いてレーザー加工条件と照射影響および形状変化の関係を評価し、高品質な加工パラメータの導出を目指した研究を行う予定である。

謝辞:この成果の一部は、NEDO「高輝度・高効率次世代レーザー技術開発」プロジェクトにおいて得られたものである。

¹ Industrial Laser Solutions for Manufacturing Japan, http://ex-press.jp/ilsj/ilsj-news/ilsj-biz-market /17623/

 $^{^2}$ 産総研プレスリリース, "極端紫外線レーザーにより熱影響が極めて少ない材料加工を実現", 2018/10/23,https://www.aist.go.jp/aist_j/press_release/pr2018/pr20181023/pr20181023.html

³ T. Shibuya et al., Appl. Phys. Lett. 113, 171902 (2018).

⁴田中真人他、"短パルスレーザーによる加工技術の産業応用",本報告集

⁵ N.E. Stankova et al., Appl. Surf. Sci. 336, 331 (2015).

⁶ P.A. Atanasov et al., Appl. Surf. Sci. 374, 229 (2016).

レーザー加工材料の特性評価技術の開発

〇小川博嗣^{1,2}, 澁谷達則¹、盛合靖章²、佐藤大輔¹,²、安崎利明¹、馬場大輔¹、田中真人¹,²、黒田隆之助¹,² 放射線イメージング計測研究グループ¹, 先端オペランド計測技術オープンイノベーションラボラトリ²

1. 研究・開発の背景

レーザー加工は付加価値の高い加工やものづくりの自動化・効率化が図れる等様々な特徴を有している。高品質なレーザー加工を実現するために、従来の経験と勘に頼った方法ではなく、材料に応じて最適な加工パラメータの導出ができることが期待されている。当グループでは、顕微ラマン、赤外顕微鏡、エリプソメトリやポンププローブ法等を用いた加工評価技術の開発を行っている。

2. 研究・開発の内容

顕微ラマン装置(図1)により超短パルスレーザーで微細加工したサンプル(図2)を測定した。対象材料としてマイクロ流体デバイス等に利用されている高分子材料のポリジメチルシロキサン(PDMS)を用い加工部周辺領域を顕微ラマンで観察し、PDMSの照射影響を評価した(図3)。

3. 考察•議論

レーザー未照射領域に存在するポリマー主鎖に由来するSi-O-Siのピーク(488 cm⁻¹付近)が、レーザー照射領域で減少するとともに、高波数側(516 cm⁻¹付近)にピークが出現している。このピークはナノSi結晶に起因しており、レーザー照射により主鎖が切断されて生成したSi原子が凝集し形成されたと解釈できる。

4. 結論および今後の展開

レーザー加工部周辺の化学結合状態の変化 を評価できることが分かった。今後は、加工 条件と照射影響および形状変化の関係を評 価し、高品質な加工パラメータの導出を行う。

図1:顕微ラマン装置

図2:超短パルスレーザーにより 微細加工したPDMSサンプル

図3:PDMSのラマンスペクトル (レーザー照射域(上)、未照射域(下))

技術を社会へ産総研

イオン付着質量分析法によるガソリンのプラズマ改質過程の解析

ナノ顕微計測研究グループ 浅川 大樹 分析計測標準研究部門 齋藤 直昭 省エネルギー研究部門 高橋 栄一

バリア放電によるガソリン燃料のプラズマ改質はエンジンの燃費向上、着火遅れ時間の短縮などに有効であることが報告されている。「しかしながら、このプラズマ改質過程の詳細なメカニズムは不明であった。本研究では、プラズマ改質を行ったガソリン模擬燃料を直接、質量分析法により分析し、生成物を同定することを目的とする。

気体状有機化合物試料の質量分析は、ガスクロマトグラフィー(Gas Chromatography: GC)と質量分析法(Mass Spectrometry: MS)を組み合わせた分析システム(GC- MS)を用いるのが標準的手法である。しかし、GC は時間と手間のかかる前処理であるので、迅速・直接計測やリアルタイム分析が不可能である。また、GC-MS において通常用いられる電子イオン化法(Electron Ionization; EI)では、試料をイオン化する際に試料が複数の断片(フラグメント)に分裂し、正しく計測できない場合がある。これらの問題を克服できるイオン化法として、イオン付着イオン化法(Ion Attachment; IA)がある。IA では、フラグメント(分子開裂)無しのイオン化が実現できるため、前処理を必要とせずプラズマ改質過程のリアルタイム計測が可能となる。本研究では、IA の試薬イオンとして Na⁺を用いた。

図1に本研究に用いた実験装置の概略図を示す。まず燃料タンク中のイソオクタンなどの 液体燃料を気化させ、空気と混合し、空気予混合気を形成させる。精度の高い混合比で液体 燃料の空気予混合気を形成するために、ブロンコスト社製のコリオリ式微小流量液体マスフ

MFC: Mass Flow Controller

CEM: Controlled Evaporation and Mixing

OC: Oxidation Catalyst

A/F: Air to Fuel Ratio Analyzer

図1. 実験装置の概略図

ローコントローラー、および気化器(Controlled Evaporation System: CEM)を用いた。一般的な液体のマスフローコントローラーは流量測定が熱伝導率に基づくため、油種ごとに流量の校正係数を設定し直す必要があり、さらにサロゲートガソリンの様な混合物に対する校正は容易では無い問題があった。コリオリ式流量計は質量流量を計測するため、油種の変更に対しても密度情報のみで対応が可能である利点を有している。導入する空気は巴商会の G2 グレードを使用した。また CEM ではその内部に設置された加熱円筒内に微小噴霧を形成することで正確な気化を実現しているため時間的に安定した当量比の予混合気の形成が可能である。燃料の圧送のため、液体燃料のタンクは窒素ガスを用いて加圧した。窒素を用いた理由は燃料中に酸素が溶解することによる当量比への影響を避けるためでもある。気化した予混合気は120 ℃に加熱された配管を経て、プラズマリアクター部に輸送されている。このプラズマリアクター部に設置したプラグに高電圧を引火し、イソオクタンやサロゲートガソリンのプラズマ改質を行った。プラズマ改質による生成物は CANON ANELVA 製のイオン付着イオン化質量分析装置(IAMS)に導入し分析を行った。サンプルガスの導入量の調整は図3中の Needle Valve(微小流量バルブ)を用いて行った。

ここではイソオクタンをプラズマ改質した例を図 2 に示す。イソオクタンを空気中でプラズマ改質し、生成物を IAMS により分析したところ、 $[C_nH_{2n}O+Na]^+(n=3\sim8)$ が検出された。一方、窒素中で同様の実験を行ったところ、プラズマ改質による生成物は検出できなかった。この結果から、プラズマ改質はまず空気中の酸素分子を解離させ、生成した酸素原子がイソオクタンと反応し燃料の改質プロセスが進行していると考えられる。次にプラズマ改質の詳細なメカニズムについて分子軌道法による化学反応シミュレーションを用いて検討を行った。この結果によると、プラズマによって生成した酸素原子は、イソオクタン分子から水素ラジカルを引き抜き、ラジカル化させる。この反応によって生成したイソオクタンラジカルは酸素分子の付加により過酸化ラジカルとなる。この過酸化ラジカルは不安定化合物であるため、ヒドロペルオキシド、アルコキシラジカルを経由してアルデヒド、ケトンを

図 2. イソオクタンのプラズマ改質生成物の IAMS スペクトル (a) 空気中でのプラズマ改質による生成物 (b) 窒素中でのプラズマ改質による生成物

生じる。従って、IAMS で検出された $[C_nH_{2n}O+Na]^+(n=3\sim8)$ はアルデヒドおよびケトンであると推測できる。 2 本研究の結果によって明らかとなったガソリンのプラズマ改質過程の概略図を図3に示す。プラズマ改質はエンジンの燃費向上、着火遅れ時間の短縮などの減少は、プラズマ改質により生成するヒドロペルオキシドやアルデヒド、ケトンなどの存在に起因すると考えられる。

図3. ガソリンのプラズマ改質の概略図

¹ A. Kuramochi, E. Takahashi, D. Asakawa, N. Saito, M. Nishioka, Combustion Sci. Tech. in press,

² D. Asakawa, A. Kuramochi, E. Takahashi, N. Saito, Phys. Chem. Chem. Phys. **20**, 1082 (2018).

イオン付着質量分析法による ガソリンのプラズマ改質過程の解析

○浅川 大樹¹. 齋藤 直昭². 高橋 栄一³

ナノ顕微計測研究グループ1. 分析計測標準研究部門2. 省エネルギー研究部門3

1. 研究の背景

バリア放電によるガソリン燃料のプラズマ改質はエンジンの燃費向上、着火遅れ時間の短縮などに有効であることが報告されている。しかしながら、このプラズマ改質過程の詳細なメカニズムは不明であった。本研究では、プラズマ改質を行ったガソリン模擬燃料を直接、イオン付着イオン化質量分析法により分析し、生成物の同定を試みた。

模擬ガソリンの成分であるイソオクタンをプラズ マ改質し、生成物をイオン付着質量分析により 分析した結果を図1に示す。このスペクトルには [C_nH_{2n}O + Na]⁺ (n = 1 ~ 8) が主生成物として検 出されており、プラズマによってイソオクタンがケ トンおよびアルデヒドへと改質されていることが わかった。これらの生成物の生成メカニズムに ついて分子軌道法による化学反応シミュレーシ ョンを行い改質の化学反応過程について検討を 行った。この結果によると、プラズマ改質はまず 空気中の酸素分子を解離させる。生成した酸素 原子はイソオクタンから水素原子を引き抜きラジ カル化する。生成したイソオクタンラジカルは酸 素分子の付加により過酸化ラジカルとなる。この 過酸化ラジカルは不安定化合物であるため、さ らなる解離反応によって[C_nH_{2n}O + Na]⁺(n = 1 ~ 8)を生じたと考えられる。このガソリン燃料の プラズマ改質過程の概略図を図2に示す。

3. 結論および今後の展開

イオン付着イオン化質量分析法によってプラズマ改質で生成する有機化合物の分析が可能であることを示した。一方で NO_x 、CO、 CO_2 などの気体分子を検出することはできなかった。これらの気体分子ついて光イオン化質量分析法による計測を行い、プラズマ改質過程の総合的な理解を目指す。

図1. イソオクタンのプラズマ改質生成物のイオン付着イオン化質量分析

図2. ガソリンのプラズマ改質の概略図

技術を社会へ Integration for Impossition

プロトン性イオン液体を用いた二次イオン質量分析(SIMS)用

イオンビーム源の開発

ナノ顕微計測研究グループ 藤原 幸雄、齋藤 直昭

二次イオン質量分析(SIMS)用の一次イオンビーム源として、イオン液体を真空中でエレクトロスプレーする方式を用いたクラスターイオンビーム源の研究開発を進めている。集東性向上の観点からニードル型エミッターを用い、また、プロトン付加反応を促進するためプロトン性イオン液体の一種である硝酸プロピルアンモニウムをビーム化して SIMS 分析を実施した。イオンビーム中のプロトンが分析試料中の有機分子に付着してプロトン化分子が生成され、二次イオン強度を増大できることがわかった。

1. はじめに

二次イオン質量分析法(Secondary Ion Mass Spectrometry: SIMS)は、イオンビームを試料表面に照射し、スパッタリングによって放出される試料原子(あるいは分子)の二次イオンを質量分析することにより、試料構成元素(あるいは分子)の同定ならびに濃度測定を行う分析法である(図 1)。

分析対象が無機材料の場合には、酸素 (O_2^+) やセシウム (Cs^+) あるいはガリウム (Ga^+) 等のイオンビームが用いられ、条件を選べば高い面分解能 $(\sim 50~\rm nm$ 程度) の SIMS 分析が可能である。一方、有機材料の場合には、イオンビーム照射に起因する有機分子の結合の開裂や断片化 $(=7~\rm p \, \it j \, \it j$

図 1. 二次イオン質量分析(SIMS)の原理図

しかし、近年では、クラスターイオン(C_{60} ⁺ や Bi_3 ⁺ など)を一次イオンビームとして用いることで、比較的大きな有機分子(分子量:数百~2,000 u 程度)も検出できるようになり、半導体産業のみならず、化学分野等においても、SIMS の応用範囲が広がっている(= "クラスターSIMS" と呼ばれる)。

最近では、"ガスクラスター"や"水溶液の帯電液滴"などの非常に大きなクラスターイオンを SIMS 用一次イオンビームとして用いることで、1万 u を超える大きな分子も検出できるようになり、化学やバイオメディカル分野においても SIMS 分析が応用されつつあ

る。しかし、これらのクラスターイオンビームの集束性はあまり良くないため、ビーム径は太く、結果として高い面分解能でのイメージング測定は困難となっている。このため、大きな質量を有するクラスターイオンを集束性良くビーム化する技術の開発が喫緊の課題となっている。

2. 研究方法

エレクトロスプレー法は、電解液中から帯電液滴や多原子イオンを気相中に取り出すことを可能とするため、質量分析技術におけるイオン化法のみならず、SIMS 用の一次イオンビーム生成技術としても有望である。しかし、大気中でエレクトロスプレーする場合には、大気中でのイオン発散の影響が大きく、集束性の良いビームを生成することは難しい。集束性の良いビームを生成する観点からは、真空中でのエレクトロスプレーが有効となる。一方、(蒸気圧の無視できない)一般的な電解液を用いる場合には、蒸発と凍結が繰り返されるため真空中での安定なエレクトロスプレーは容易ではない。

そこで我々は、(蒸気圧のほとんど無い)"イオン液体(Ionic liquid)"を高真空中でエレクトロスプレーする方式のイオンビーム源を提案し、研究開発を進めている。¹⁻³(図 2)イオン液体は、室温においても液体状態である"塩(えん)"の総称である。蒸気圧がほとんど無いため、真空中でも蒸発せずに液体として存在し、またそれ自体がイオン性の液体であるため、高真空中においてもエレクトロスプレーが可能であることが大きな特徴である。(ちなみに、水や

図 2. 真空エレクトロスプレーを用いた イオン液体ビーム源の概念図

メタノールのような蒸気圧が無視できない液体の場合には、蒸発や凍結が発生するため真 空中での安定なエレクトロスプレーは難しい。)

イオン液体は多種多様なものが存在し、プロトン性のものと非プロトン性のものに分類される。既に、非プロトン性のイオン液体として、四級アンモニウム系の[DEME][TFSA] (分子量 426、陽イオン $C_8H_{20}ON^+$ 、陰イオン $N(SO_2CF_3)_2$)やイミダゾリウム系の [EMIM][TFSA] (分子量 391、陽イオン $C_6H_{11}N_2^+$ 、陰イオン $N(SO_2CF_3)_2$)を用いて実験を行っている。 $^{4-10}$ また、プロトン性イオン液体としては、[dema][TfO](分子量 237、陽イオン $C_5H_{14}H^+$ 、陰イオン CF_3SO_3)や硝酸プロピルアンモニウム(分子量 122、陽イオン $C_3H_7NH_3^+$ 、陰イオン NO_3)を用いたイオンビーム生成実験を行っている。 $^{11-14}$ さらに、硝酸プロピルアンモニウムを用いて SIMS 実験を行ったところ,正イオンモードではプロトン付加反応やプロピルアンモニウム($[C_3H_7NH_3]^+$)付加反応による二次イオン生成効果が確かめられた。負イオンモードでは、有機分子からプロトンを引き抜く作用(脱プロトン化)による負イオン生成や硝酸イオン($[NO_3]$)が付加する反応によっても二次イオン生

成が可能であることも明らかとなっている。13

これまで筆者らは、エレクトスプレー部としてキャピラリー(細管)を用いてビーム生成を行ってきた。一方、集東性の良いビーム生成の観点からは、液体金属イオン源と同様にニードル(針)を用いた方式の方が有利と考えられる。

本シンポジウムでは、集束性の向上が 期待されるニードル型エミッターからの ビーム生成ならびに SIMS 実験について 報告する。ニードル型エミッターとして はガラス棒を用いた。表面を粗くして濡 れ性を高め、プーラーにより先端を尖ら

図3. ニードル型エミッターの概念図

せたものを使用した。ガラス棒の表面を硝酸プロピルアンモニウムで濡らし、その先端に電界を印加して真空エレクトスプレーによりビームを生成した。(図3)¹⁴さらに、イオン液体ビーム源を TOF-SIMS 装置に取り付け、有機系試料の SIMS 分析を行った。

3. 研究結果と考察

図 4 は、アミノ酸の一種である アルギニン (分子量 174.1) に対し て硝酸プロピルアンモニウムのイ オンビームを照射して得られた SIMS 結果である。 14 アルギニン分 子にプロトン (H^+) が付加したプロトン化分子([Arg+H] $^+$ 、m/z 175.1) が大きな信号として検出された。 硝酸プロピルアンモニウムがプロトン供給源として試料分子にプロトン供給源として試料分子にプロ

図 4. アルギニンの SIMS マススペクトル

トンを供給し、プロトン化分子を効率よく生成できたためと考えられる。14

4. まとめ

二次イオン質量分析(SIMS)用の一次イオンビーム源として、プロトン性イオン液体を真空中でエレクトロスプレーさせる方式を用いたコンパクトかつ高集束性のクラスターイオンビーム源の研究開発を進めている。開発したイオン液体ビーム源を用いて SIMS 分析を実施し、イオン液体ビーム照射によって有機試料の SIMS 分析が可能であることを確認した。また、硝酸プロピルアンモニウムなどのプロトン性イオン液体は、プロトン供給源として作用しプロトン化の促進効果を持つため、有機系試料の SIMS 分析に有用であることがわかった。今後は、クラスターイオンビームの集束性化に取り組む予定である。

- ¹Y. Fujiwara et al., Proc. 7th Int. Symp. Atomic Level Charact. for New Materials and Devices, 2009, p471.
- ² Y. Fujiwara et al., Vacuum 84, 544 (2010).
- ³ Y. Fujiwara et al., Jpn. J. Appl. Phys. 48, 126005 (2009).
- ⁴ Y. Fujiwara et al., Nucl. Instr. and Meth.B, 268, 1938 (2010).
- ⁵ Y. Fujiwara et al., Chem. Phys. Lett., 501, 335 (2011).
- ⁶ Y. Fujiwara et al., Jpn. J. Appl. Phys., 51, 036701 (2012).
- ⁷ Y. Fujiwara et al., J. Appl. Phys., 111, 064901 (2012).
- ⁸ Y. Fujiwara et al., Surf. Interface Anal. 45, 517 (2013).
- ⁹ Y. Fujiwara et al., e-Journal of Surface Science and Nanotechnology, 12, 119 (2014).
- ¹⁰ Y. Fujiwara and N. Saito, Surf. Interface Anal. 46, 348 (2014).
- ¹¹ Y. Fujiwara and N. Saito, Appl. Phys. Express 8, 076601 (2015).
- ¹² Y. Fujiwara and N. Saito. Rapid Commun. Mass Spectrom. 30, 239 (2016).
- ¹³ Y. Fujiwara and N. Saito. Rapid Commun. Mass Spectrom. 31, 1859 (2017).
- ¹⁴ Y. Fujiwara and N. Saito. Rapid Commun. Mass Spectrom. 32, 1867 (2018).

プロトン性イオン液体を用いた二次イオン質量分析(SIMS)用イオンビーム源の開発

○藤原 幸雄, 齋藤 直昭 ナノ顕微計測研究グループ

1. 研究·開発の背景

二次イオン質量分析(SIMS)は、一次イオンビームを試料表面に照射することで生じた二次イオンを質量分析し、元素や分子の同定ならびに濃度測定を行う表面分析法である。

近年、クラスターイオンビームを用いることで、 有機系の大きな分子も検出できるようになり、 シリコンなどの無機材料のみならず、有機材料 等に対しても応用範囲が広がっている。

2. 研究・開発の内容

有機材料のSIMS分析では、通常ビスマス (Bi)などの液体金属クラスターイオン源が用いられているが、感度の低さが課題となっている。

有機分子を高感度に質量分析するためには、 プロトン付加反応の促進が有効である。そこで 我々は、反応性プロトンを内包する溶融塩(プロトン性イオン液体)のイオンビーム化に取り 組んでいる。

プロトン性イオン液体としては、硝酸プロピルアンモニウムを用いた。高集束性を特徴とする液体金属イオン源を参考として、ニードル型エミッターを用いたイオン源の開発を進めている。

3. 結論および今後の展開

質量電荷比(m/z)が5,000を超える巨大クラスターイオンを含むビーム生成に成功した。また、SIMS実験の結果、プロトン付加の二次イオン等を高強度で生成可能なことも確認できた。

今後は、クラスターイオンビームの高集束化 等に取り組む予定である。

図1: 二次イオン質量分析(SIMS)の原理図

図2:液体金属イオン源を参考とした ニードル型エミッター(概念図)

図3:プロトン性イオン液体ビーム照射を 用いたSIMS分析の結果 (試料:ポリエチレングリコール PEG300)

URL:https://unit.aist.go.jp/rin

大気中での電子状態の評価:

二光子—光電子収量分光法 (2P-PYS)の開発 ナノ分光計測研究グループ 細貝 拓也、松崎 弘幸、中村 健

要旨

電子デバイスの開発・性能改善にとって、素子を構成する電子材料の電子構造の評価は重要である。一般に、電子構造のエネルギー評価には紫外または X 線光電子分光法が用いられる。通常、光電子分光は試料を超高真空下におくことが測定の条件であり、得られる情報は価電子帯および内殻準位のエネルギーに限られる。本研究では、電子材料の機能化に重要な反応 (励起) 状態における電子構造評価を大気中で行う二光子一光電子収量分光法(2P-PYS)装置の開発を目指している。当該装置は電子エネルギーの時間分解測定によって、異なるスピン状態の情報も得られることが期待されている。

1. はじめに

物質の電子状態は、金属や半導体、絶縁体などの機能性材料の機能の根幹である。電子状態の実験的な評価手法は、材料の物性制御および新規材料開発のために長らく開発されてきた。紫外光電子分光法や逆光電子分光法は価電子帯(または占有準位)および伝導帯(または空準位)の情報を精密に調べられるため広く用いられている。一方、材料が光や電気などのエネルギーを受け取って励起状態(または反応状態)にあるときの電子エネルギーおよびその状態の時間推移(ダイナミクス)を調べる手法はポンプ・プローブ分光法と呼ばれる。時間分解光電子分光法は、励起状態にある伝導帯や空準位の電子のエネルギーを光電効果によって直接評価できる手法として知られている。

我々は現在、新たな励起状態の研究手法として、光電子収量分光法(Photoelectron Yield Spectrospcy (PYS))とポンプープローブ分光法の技術を組み合わせた二光子一光電子収量分光法(Two photon (2P)-PYS)¹を提案して、その開発を進めている(図 1)。2P-PYS は時間分解光電子分光法に必要な超高真空環境を使わず、計測に光電子の閾値分光法を採用することで、非常に簡便に励起状態のエネルギー計測を実現することができる。本発表では、2P-PYS の概要と装置開発の状況として、有機半導体ペンタセン薄膜を用いた研究結果を紹介する。

図 1. 2P-PYS の原理の概略図と計測技術の特徴(上)、および従来法(光電子収量分光法)とその比較(下)。IP(イオン化ポテンシャル)は基底状態、E_{T1}は最低励起三重項状態、E_{S1}は最低励起一重項状態からの光電子放出に必要なエネルギー閾値を示す。

2. 研究方法

PYS の計測は、試料の光電効果による電荷補償のためにアースから流れる微小電流を検出する。装置構成の概略は既報「を参照されたい。試料チャンバーは ICF70 キューブをベースとし、雰囲気制御のために大気下だけでなく超高真空にも対応している。試料ホルダーは SUS304 板を用いており、その上に試料を導電性両面テープで固定した。光電子の捕集電極は内径 10 mm、厚さ 2 mm の輪状の銅板として、試料面から目視で 1 mm 程度手前においた。この捕集電極はチャンバーを通してアースに接しており、試料側とは同軸のトリアキシャルコネクターで回路を接続している。光電子を捕集するための加速用および測定用の電源および電流計には Keithley 社のフェムト 6430 型サブフェムトアンペアリモートソースメータ(ノイズ性能: 0.4 fA)を用いた。測定プログラムは LabVIEW を用いて作成した。

測定試料には未洗浄の ITO コートガラス基板上に真空蒸着法(真空度 10^6 Pa)で作製した平均膜厚 15 nm のペンタセン($C_{22}H_{14}$, PEN)を用いた。膜厚と蒸着速度の計測には水晶振動子膜厚計を用いた。光源には Nd:YAG パルスレーザ(繰り返し周期 10 Hz、パルス幅 <150 ps)の第三高調波(355 nm(=3.49 eV))を用いた。パルスレーザ光はそのままの照射、またはハーフミラーによってポンプ光とプローブ光に分け、遅延ステージを用いて遅延時間 t を変えて試料に照射した。時間原点は二つの光照射によって光電子量が最大となる光路長から決定した。ポンプ光強度の調整には回転式反射型可変 ND フィルターを用いた。測定は全て室温、1 Pa 程度の真空下で行い、光電子の捕集効率を上げるために加速電圧-200 V を試料に印加した。照射光強度の測定は OPHIR 社のエネルギーメータ(PE10-SH-V2)を用いた。

図 2. 2P-PYS 原理検証用のポンプ・プローブ光電子放出システム。右下には計測室(写真:中央下)の特徴を記す。

3. 研究結果と考察

図 3(a)に PEN/ITO 試料へ $t\sim0$ 秒でポンプまたはプローブ光を照射した時の電流値の変化を示す。この実験は連続的に次のステップの条件で行った。遮光下→ポンプ光のみ照射→プローブ光のみ照射→ポンプ光とプローブ光の同時照射→遮光下。各プロセスで得られた平均電流を Idark、Ipump、Iprobe、Ipump&probe とすると、それぞれ 12 fA、226 fA、69 fA および 465 fA の値が得られた。Ipump&probe の値は Ipump と Iprobe の合計値と一致しなかった。そこで、Idark の値(オフセット値)を考慮して、Ipump&probe において各単独光照射より過剰に流れた分の電流値(I)を算出すると I=182 fA となった。これは二つの光の同時照射による非線形な電場強度の増大を反映したものであり、つまり二光子吸収によって過剰に生じた光電子放出分の電流が I として観測されたことを意味している。

次に、ポンプ光とプローブ光の強度を $1.25\,\mathrm{mW/cm^2}$, $0.79\,\mathrm{mW/cm^2}$ に固定して、 tを走査しながらポンプ光によって生成した Iを計測した(図 3(b))。 t=0 ns 辺りの条件下では全半値幅 $305\,\mathrm{ps}$ のガウス関数状の電流分布が見られた。この値は用いたパルスレーザの時間的な重ね合わせの値(= $150\,\mathrm{ps}$ x $\sqrt{2}$)におおよそ対応しており、二光子の同時吸収による光電子放出によるものと考えられる。一方、このガウス分布から十分離れた tの領域、つまりに二つのパルスは時間的な重なりから十分離れた状態においても $30\,\mathrm{fA}$ 程度の電流値が見られた。このことは、観測された電流値はポンプ光によって発生したペンタセン薄膜中の励起種からの光電子放出に起因していることを示唆している。

この可能性を検証するため、プローブ光の強度を一定 $(2.46 \,\mathrm{mW/cm^2})$ にして、ポンプ光の強度を変化させながら Iを見積もった $(\boxtimes 3(c))$ 。その結果、 Iはポンプ光の強度の一乗に比例した。これはすなわち、 $t=0.5 \,\mathrm{ns}$ の条件で放出された光電子は基底状態からの二光子吸収過程ではなく、一光子吸収過程によって光電子放出が起こったことを示している。

すなわち、本計測システムにおけるポンプ・プローブ光照射システムによって、ペンタセン薄膜の励起状態からの光電子放出が検出可能であることが実証された。

図 3. (a) PEN/ITO 試料を用いた低真空下(0.1 Pa)におけるポンプ・プローブ光照射による光電子放出。ポンプ光とプローブ光のパワーはそれぞれ 1.25 または 0.79 mW/cm² とした。 (b) 励起状態からの光電子放出量 I の遅延時間 t 依存性。黒線と青線はそれぞれガウス関数とステップ関数を用いてフィットした結果であり、 赤線は二つのフィッティング結果の足し合わせたものを示す。ポンプ光とプローブ光のパワーは上述の(a)で用いた値とした。 (c) t=0.5 ns の条件下において計測した I のポンプ光強度依存性。プローブ光の強度は 2.46 mW/cm² とした。

Han らの文献 2 によると、ITO 基板上のペンタセンのイオン化ポテンシャルは $4.90\,\mathrm{eV}$ 、電子親和力は $2.70\,\mathrm{eV}$ である。今回用いた光源のエネルギーは $3.49\,\mathrm{eV}$ であり、ペンタセンの最高占有準位からの光電子放出は二光子吸収過程でしか起こらず、図 3 のように一光子吸収過程で光電子放出が起こるのは何らかの励起準位に由来していると考えられる(図 4 参照)。しかしながら、上記の Han らが観測した電子親和力は終状態に電子が一つ存在するイオン化状態のものであり、今回観測する対象の中性励起種の電子準位はクーロン相互作用によって束縛エネルギーがより大きくなっていることが考えられる。実際、2PPE で計測したペンタセン薄膜の S_1 および T_1 準位のピークエネルギーは $3.31\,\mathrm{eV}$ 、 $4.27\,\mathrm{eV}$ と見積られている 3 。今回用いた光のエネルギーからすると、 S_1 からの光電子放出は可能である

が、 T_1 からでは 0.78 eV ほど光エネルギーが不足していることになる。実際には熱エネルギーおよび薄膜中の分子間相互作用や分子配列の不均一性によって T_1 の 4.27 eV の値より小さいエネルギーが取り得ることも考えられるが、いずれにしろ今回観測した過渡種からの光電子放出が起こった原因の更なる実験的な検証が必要と思われる。

図 4. 光電子放出過程とペンタセン薄膜試料の電子構造の関係

4. まとめ

近年、我々が報告した 2P-PYS の開発状況を概説した。0.1 Pa という低真空下において、有機半導体ペンタセンの励起状態からの光電子放出が十分に識別可能なことが本計測システムで示された。今後は、ポンプ光とプローブ光を分光することにより、当初の目的である励起状態電子巡視からの光電子放出の閾値計測が可能なことが期待される。

¹T. Hosokai, H. Matsuzaki, A. Furube, K. Nakamura, Appl. Phys. Exp., 10, 022401 (2017). ²W. Han, H. Yoshida, N. Ueno, S. Kera, Appl. Phys. Lett., 103, 123303 (2013).

³C. W-Lun, M. Ligges, A. Jailaubekov, L. Kaake, L. Miaja-Avila, X.-Y. Zhu, Science, 334, 1541 (2011).

大気中での電子状態の評価: 二光子—光電子収量分光法(2P-PYS)の開発

〇細貝 拓也、松﨑 弘幸、中村 健 ナノ分光計測研究グループ

1. 研究・開発の背景

- 1. 有機ELや太陽電池、光触媒等に代表される光機能性材料の高性能化のため、材料の電子状態だけでなくスピン状態も含めた詳細なエネルギー情報が求められている。
- 2. 本研究では、レーザを用いた時間分解分光技術を用いていることで、大気下や低真空下などの各種条件下において、材料の励起状態における電子エネルギー計測が可能な新しい実験手法を紹介する。

2. 研究・開発の内容

装置および実験方法の概略図

励起状態からの光電子放出DIの時間依存性

時間分解—光電子収量分光法(Two photon (2P)-PYS) の提案

光電子放出過程と試料の電子構造の関係

【文献】 T. Hosokai, et al. Appl. Phys. Express, 10, 022401 (2017)

3. 結論および今後の展開

- 大気下における二光子吸収の光電効果を有機半導体ペンタセンで確認。
- T_1 からの光電子放出の選別に成功。 => S_1 と T_1 の選別が可能に!
- 今後は波長・遅延時間可変パルスレーザを用いた空準位測定システムの開発を進める。

*本研究はJSPS科研費16K17975の助成を受けたものです。

産総研の低速陽電子ビーム施設

X線・陽電子計測研究グループ オローク ブライアン、満汐 孝治、小林 慶規、 鈴木 良一、大島 永康

要旨

材料中の陽電子の寿命は、材料に含まれる原子・分子サイズの微小空隙のサイズや濃度によって変化する。この原理を用いた微小空隙分析法は、陽電子寿命法と呼ばれている。我々のグループでは、機能性材料・先端材料の表面近傍の微小空隙を評価するために、高強度陽電子ビームを用いた陽電子寿命測定法の開発を行っている。

1. はじめに

陽電子は電子の反粒子であり、質量は電子と同じであるが、電荷は電子とは逆符号(プラス)である。陽電子は、自然界にはほとんど存在しないが、電子加速器や放射性同位元素 (RI) 等で生成することができ、物質中に打ち込まれると電子と対消滅して高エネルギーの光(消滅ガンマ線)を放出する。材料中で陽電子が消滅するまでの時間(寿命)は原子空孔や分子間空隙のサイズに関係するため、寿命を測定することによって、電気的性質、物質透過性など材料の様々な特性に影響を与える空孔・空隙を評価できる¹。この分析法は、陽電子寿命測定法(Positron Annihilation Lifetime Spectroscopy: PALS)と呼ばれている。材料中での典型的な陽電子寿命は、0.1 ns - 10 ns である。

機能性材料・先端材料の多くは、表面処理、薄膜積層化、微細化により機能を高めたり、効率を上げたりする。そのため、加工部材の表面近く、さらには部材の局所領域を選択的に分析することが重要である。しかし、電子加速器やRIなどで生成した直後の陽電子は、高エネルギーな上に速度がふぞろいで指向性もないため、試料の特定位置に陽電子を打ち込むことが難しく、そのままではPALSによる先端材料分析の適用が困難である。

我々は、電子加速器を使って生成した高エネルギーの陽電子を速度・指向性が揃った低速陽電子ビームに変換し、さらに後述するリニアストレージやパルス化装置等を用いてビームのパルス時間構造を調整して試料に入射することで、試料の表面近傍あるいは薄膜状試料に対しても PALS 分析を適用できる装置を開発した。本稿では、低速陽電子ビーム利用施設と開発した測定装置について紹介する。

2. 低速陽電子ビーム利用施設

産総研・つくば中央第2事業所の加速器施設では、電子線形加速器を用いて高強度陽電子ビームを発生する(図1:左上) 2 。40 MeV 程度にまで加速した電子をタンタル・ブロックに照射し、電子陽電子対生成反応によって生成した高エネルギーの陽電子を、タングステン箔を井桁状に組んだ減速材を通すことで、エネルギーが揃った低速陽電子ビームに変換する(図1:左下)。発生できる低速陽電子ビーム強度は毎秒 10^6 ~ 10^7 個であり,放

射性同位元素を用いて生成できるビーム強度より 1-2 桁ほど大きい. なお、低速ビームのビーム径は~15 mm で、エネルギー広がりは~10 eV である。陽電子の発生部周辺では、放射線レベルが高く測定には不適であるため、低速陽電子ビームを加速器室から測定室まで輸送し利用する。なお、低速陽電子は、ソレノイドコイルで真空ダクトに沿って形成した磁場で輸送する。

加速器の電子ビームは、数マイクロ秒のパルス状で、繰り返し周波数 $10\,Hz\sim50\,Hz$ で発生する。低速陽電子ビームも、電子ビームと同じ時間構造で発生する。このような時間構造の陽電子ビームをそのまま測定に用いれば、放射線検出器系の不感時間(数+ μ s)内に多くの陽電子が到着することになり陽電子消滅イベントの計数率低下を招く.そこで、リニアストレージと呼ばれるデバイスを用いて、陽電子パルスを電場と磁場で一旦閉じ込めて、数ミリ秒の時間をかけて少しずつ下流側に引き出すことにより、準直流ビームに変換する.

準直流化した低速陽電子ビームは、2 台の分析装置(陽電子寿命測定装置(PALS)、陽電子プローブマイクロアナライザー(positron probe microanalyzer: PPMA))にまで輸送される (図 1 右)。 PALS は、直径~10 mm の陽電子ビームによって比較的高速に測定するために用いるれ、PPMA は、ビーム径を数十マイクロメートルに集束した陽電子マイクロビームで、 試料局所の陽電子寿命を測定するのに用いている。

図 1. 産総研 低速陽電子利用施設:電子線形加速器(左上)、陽電子発生部(左下)と 陽電子ビームライン(右)

3. 陽電子寿命測定装置 (PALS)

エネルギー可変の陽電子ビームを試料に入射し、試料の深さ方向(平均侵入深さ)を変えて、空隙情報を取得するビーム式陽電子寿命測定装置である。準直流化した陽電子ビームを、パルス化装置で \sim 0.1 ns 程度の極めて時間幅の短いパルス状にして試料に入射し、消滅ガンマ線を検出する。陽電子の入射時刻(パルス装置から得られるトリガー信号)と消滅γ線の検出時刻の時間差から、陽電子寿命を測定する。なお、消滅 γ 線の測定には、シンチレーション検出器を用いる。試料への陽電子入射エネルギーは、試料のバイアス電圧(1 kV \sim 30 kV)を変化させることで可変であり、陽電子の平均侵入深さを \sim 数 + nm \sim 数 μ m の範囲で調整できる。試料ホルダーは、15 mm 四方の試料を5 個まで設置でき、ロードロック機構により容易に交換ができる。測定時間は1 試料あたり 10 分-20 分である。鉛直方向から陽電子ビームを試料へ入射できる構造となっているため、固体試料だけでなく、(真空容器内に設置可能であれば)液体や粉末体なども測定が可能である。

4. 陽電子プローブマイクロアナライザー (PPMA)

陽電子ビームを電磁界レンズによって数 10 μm にまで集束して試料に入射し、陽電子寿命を測定する装置であり、微小な試料の分析、あるいは、大きな試料中での局所的な分析に適用する。任意深さでの陽電子寿命測定を行うために、上述の PALS と同様に、パルス化装置による~0.1 ns 程度の短パルス化後に、試料電位を変えて 1 kV - 30 kV で試料に入射する。試料をマニピュレーターで平面走査することで、深さと平面方向を空間分解した 3 次元局所陽電子寿命マッピング測定も可能である 3.4 (図 2)。この技術は、応力負荷した鉄鋼材料の水素脆化機構解明 5 や延伸ポリエチレン中の自由体積評価 6 などに応用されている。また、集束陽電子ビームを微小な SiN 製真空窓(30 nm 厚)を通して大気圧に引き出し、湿潤調整下で陽電子寿命を測定する、環境制御型陽電子マイクロプローブアナライザーも開発されている 7。試料室の湿度を調整することで、高分子材料中の空隙サイズの湿度依存性評価等に用いられている。

5. まとめ

産総研 低速陽電子ビーム利用施設では、電子線形加速器により高強度の低速陽電子ビームを発生し、ビームパラメーター(時間構造、エネルギー、ビーム径)を制御して試料に入射することで、陽電子寿命測定法による機能性材料・先端材料のナノ空隙評価が可能である。今後、高速測定用の陽電子寿命測定装置と、局所分析用の陽電子プローブマイクロアナライザーの高度化を進め、共用プラットフォーム 8 を通して外部公開することで、先端材料開発に一層貢献したいと考えている。

図 2. PPMA を用いた陽電子寿命測定法の概略図。ビームの打ち込み位置を 3 次元的に制御することで、微小試料の PALS 評価ができる。また、試料上をビーム走査することで、陽電子寿命マップを得ることもできる 4.5。

¹ 産総研 Today Vol. 14-9 (2014).

² B. E. O'Rourke *et al*, Rev. Sci. Instrum. **82**, 063302 (2011).

³ N. Oshima *et al*, Appl. Phys. Lett. **94**, 194104 (2009).

⁴大島永康、他、陽電子科学, 1, 27-39 (2013).

⁵ T. Doshida *et al.*, ISIJ International **52**, 198 (2012).

⁶ T. Oka *et al.*, Appl. Phys. Lett. **101**, 203108 (2012).

⁷ K. Ito *et al*, Appl. Phys. Lett. **112**, 083701 (2018).

⁸ http://unit.aist.go.jp/rima/nanotech

産総研の低速陽電子ビーム施設

○オロークブライアン、滿汐 孝治、小林 慶規、鈴木 良一、大島 永康 X線・陽電子計測研究グループ

1. 研究の背景

構造材料や機能性材料等の先端材料開発において、材料中に含まれるナノ空隙の構造評価技術が求められている。本施設では、電子加速器ベースの高強度低速陽電子ビーム発生技術と、それを利用したナノ空隙評価のための分析技術の開発を推進している(図1)。

2. 開発の内容

▶ 垂直型陽電子寿命測定装置

鉛直方向からの陽電子入射によって、薄膜やバルク 試料だけでなく、粉末、液体試料の空隙評価にも対 応可能(図2)。

- ► 陽電子プローブマイクロアナライザー マイクロメーターサイズに集束した陽電子ビームを用いた、陽電子寿命の3次元マッピング測定(図3)。
- ▶ 環境制御型陽電子プローブマイクロアナライザー 湿度等の環境制御下で陽電子寿命測定を行う、陽電 子寿命測定装置の開発も進んでいる。

「ナノテクノロジープラットフォーム事業」において、 共用設備として公開

3. ナノ空隙評価の応用事例

- ► 金属材料:構造材料の塑性変形、疲労破壊、水素吸蔵合金、 ステンレス鋼の水素脆化
- ▶ 半導体デバイス: イオン注入欠陥、Low-k膜、界面欠陥
- ▶ 高分子材料の自由体積: RO膜、絶縁膜、ガスバリア膜

4. 結論および今後の展開

電子加速器ベースの高強度陽電子ビーム発生装置と、それを利用した先端空隙評価技術の開発を進めてきた。今後、陽電子ビームの高強度化とさらなる微細集束化による、陽電子寿命マッピングの高分解能化や、マルチ環境で他の量子ビームと複合させたその場分析システムの開発を進める。

図1. 低速陽電子ビーム利用施設

図2. 陽電子寿命測定装置

図3. 陽電子プローブマイクロアナライザー

URL:https://unit.aist.go.jp/rim

薄膜対応・空孔計測装置

X線・陽電子グループ 大平 俊行 フジ・インバック株式会社 高輪 正夫、北村 是尊、小林 洋一

要旨

陽電子寿命測定法は、物質中に打ち込んだ陽電子が電子と消滅するまでの寿命を 測定することにより、物質中の原子サイズ〜ナノサイズの空孔の有無および空孔 サイズの情報が得られる. 従来の測定法では厚さ 1 mm 程度以上のバルク材料の みしか適用できなかったが、陽電子のエネルギーを制御した低速陽電子ビームを 用いると、分析深さを制御でき、厚さ μm 以下の薄膜材料にも適用可能となる. 本研究では、半導体材料や高分子フィルムなどの薄膜材料にも適用可能な、低速 陽電子ビームを用いた陽電子寿命測定装置の汎用型装置の開発を行った.

1. はじめに

空孔は物質中で原子の抜けたすき間であり、その存在によって機能や特性が大きく変化する材料がある。例えば LSI やセンサ等に用いられる半導体材料では、原子サイズの空孔欠陥が存在すると電気特性が変化し、設計通りの性能が得られない。またガスバリア膜、分離膜等に用いられる高分子フィルムは、サブナノメートルサイズの高分子鎖のすき間(自由体積)の大きさを制御して分子の透過性能やバリア性能を制御している。そのため、これらの材料開発では、原子サイズ〜ナノサイズの空孔の計測が必要とされる。

陽電子寿命測定法は、電子顕微鏡やガス吸着法等では検出の難しい原子サイズの空孔計測が可能である。この測定法では、電子の反粒子である陽電子を物質中に入射し、物質中の電子と消滅するまでの時間(陽電子寿命)を測定する。物質内に空孔が存在すると、陽電子寿命は空孔サイズに応じて長くなるという性質を利用して空孔欠陥の有無や空孔サイズの情報を得る。ただし、一般に普及している陽電子寿命測定法は、半導体デバイスやガスバリア膜等で重要となる厚さ 1 μ m 以下の薄膜材料には適用できない。従来法では放射線源(12 Na)から放出される陽電子をそのまま用いるが、これはエネルギーが 0 から 540 keV 程度まで連続に分布する高エネルギーの白色陽電子線であるため、固体へ入射した場合、侵入深さ(=分析深さ)が 0.1 mm 以上と深くなる。そのため、通常 1 mm 程度の厚さのサンプルが必要となる。厚さが μ m 以下の薄膜材料の場合、この方式ではほぼ全ての陽電子がサンプル内に止まることなく透過してしまうために膜からの情報は得られない。

陽電子のエネルギーを単色化し、0~20 keV 程度のエネルギー範囲内で制御した低速陽電子ビームを用いて測定を行えば、分析深さを表面~数 μm の領域で制御した空孔計測が可能となる. しかし、この測定ではビームの単色化やパルス化等により陽電子強度を大幅に落とすことになるため、これまで実用的な性能で測定を行うことができるのは、高強度陽電子ビームが利用可能な加速器や原子炉を陽電子発生源に用いる大規模施設の装置 1.2 に限られていた. 我々は、この分析法を企業や大学等の材料開発の現場にも導入できるよ

うにするため、実験室サイズの汎用型 装置の開発を行ってきた.

2. 装置

図1は本研究で開発した装置の構成 を示したものである. 陽電子源には陽 電子を放出する放射性同位元素である ²²Naの密封線源(市販品)を用いている. ²²Na 線源から放出された高エネルギー 白色陽電子線は減速材(タングステン 等)に入射し、このなかで熱エネルギー 程度までエネルギーを失い、表面から数 eV のエネルギーで再放出されてくるも のを電場で加速する.これにより、エネ ルギーが制御された単色の陽電子ビー ムが得られる. エネルギーフィルターを 通すことにより単色化されなかった陽 電子を除去した後、短パルス化装置を用 いてパルス時間半値幅 150 ピコ秒以下、 パルス化周期 40 ナノ秒~480 ナノ秒(可 変)の周期的なパルス状ビームを形成 し、これを分析サンプルに入射する. 陽 電子ビームをパルス化する理由は、陽電 子寿命測定に必要となる陽電子の入射 タイミングを決めるためである. 分析サ ンプル内に入射した陽電子が消滅する タイミングは、消滅と同時に放出される γ線(511 keV)の検出信号から得ることが

図 1. 装置構成

図 2. 陽電子の打ち込み深さ分布 (密度 1.2 g/cm³ の場合の計算結果)

できる. 陽電子の入射タイミングを決めるパルス化装置のトリガー信号と、消滅γ線検出のタイミング信号との時間差を測定することにより陽電子消滅寿命スペクトルが得られる.

分析深さの制御は陽電子ビームの入射エネルギーを制御することにより行う. 本装置では陽電子の入射エネルギーを $0.5 \, \mathrm{keV}$ から $20 \, \mathrm{keV}$ の範囲で変えることができる. 図 $2 \, \mathrm{tex}$ 度 $1.2 \, \mathrm{g/cm^3}$ の固体に陽電子を入射した場合の打ち込み深さ分布を計算により求めたものである. この図からわかるように、入射エネルギーを $0.5 \, \mathrm{keV} \sim 20 \, \mathrm{keV}$ の間で可変させることにより、表面直下 $10 \, \mathrm{nm}$ 程度から数 $\mu \mathrm{m}$ 程度の範囲で分析深さを制御することが可能である. これにより、半導体デバイスで重要となる CVD 等により基板上に成膜する薄膜材料や、分離膜、バリア膜等の厚さ $\mu \mathrm{m}$ 以下の高分子膜材料等に適用することができる.

写真 1 は開発した装置の外観である。陽電子ビーム分析装置本体の長さは 2m であり、一般的な実験室に設置可能なサイズである。装置内には分析サンプルを 5 個導入可能である。サンプルごとに分析深さ等の測定条件を計測プログラム上で設定しておけば、全サンプルの各種条件での測定が全自動無人運転で行われる。またサンプルの温度を制御した測定にも対応でき、現在の装置構成では室温~400 $^{\circ}$ の範囲で温度制御した測定が可能である。

写真 1. 薄膜対応・空孔計測装置の外観

本装置では高効率単色化技術や高効率パルス化技術等の開発を行ってきた.その結果、線源を使用した小型装置でありながら、計測速度を決める陽電子消滅 γ 線の計数率は大型施設とほぼ同じ、寿命解析の精度を決める時間分解能は大型施設よりも良い性能が得られるようになった.消滅 γ 線の計数率は>5000カウント/秒が得られている.このとき、陽電子寿命成分の解析に必要とされる $3\sim5\times10^6$ カウントのデータを蓄積するのにかかる時間は 10分程度である.また、陽電子寿命スペクトルの時間分解能(分解能関数の半値幅)は 200ピコ秒が得られ、金属・半導体の原子空孔の寿命解析にも対応可能である.

3. 測定例

この装置を用いて測定した陽電子寿命スペクトルの例として、ポリスチレン膜の測定結果を図3に示す.サンプルのポリスチレン薄膜はシリコン基板表面に成膜されたものであ

り、厚さ約1μmである.測定は分析深さをポリスチレンの膜厚中心付近(~0.5μm)に設定して行っている.図3の横軸は消滅γ線の検出された時間、縦軸はγ線カウント数(最大値で規格化)であり、この減衰曲線から陽電子寿命が得られる.高分子が分子鎖のすき間(自由体積空孔)の大きさを反映したものとなり、陽電子寿命スペクトルの長寿命成分(図3,t3成分)の寿命値から自由体積空孔サイズが得られる.図3のデータから求まるポリスチレン膜の自由体積空孔サイ

図3. 高分子薄膜の自由体積空孔サイズ測定例(サンプル:ポリスチレン膜)

ズは 0.59 nm である.

同じサンプルについて温度を変えて測定を行い、得られる自由体積空孔サイズの温度依存性をプロットしたものが図4である。自由体積空孔サイズは約100℃以上にすると急激に大きくなる。ポリスチレンのガラス転移温度は約100℃であり、この温度を境に分子鎖の運動が凍結されたガラス状態から、運動しやすくなるゴム状態になる。陽電子寿命測定で得られる自由体積空孔サイズの温度依存はこれを反映したものである。

図 4. 自由体積空孔サイズの温度依存性 測定例 (サンプル:ポリスチレン膜)

参考文献

- ¹ R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, T. Tomimasu, Jpn. J. Appl. Phys. **30**, L532 (1991).
- ² P. Sperr, W. Egger, G. Kogel, G. Dollinger, C. Hugenschmidt, R. Repper, C. Piochacz, Appl. Surf. Sci. **255**, 35 (2008).

薄膜対応•空孔計測装置

 \circ 大平 俊行¹、高輪 正夫²、北村 是尊²、小林 洋一² X線・陽電子グループ¹、フジ・インバック株式会社²

1. 研究・開発の背景

陽電子寿命測定法(PALS)は、原子サイ ズの空孔欠陥の計測を行うことができる. 従来の測定法は分析深さの制御ができ ないためにバルク材料の分析に限られ ていたが、低速陽電子ビームを用いるこ とにより厚さμm以下の薄膜材料にも適 用できるようになった. しかし、その利用 は陽電子発生に加速器等を用いる大型 施設に限られていた.

2. 研究・開発の内容

企業、大学等の小規模な実験室にも導 入可能な汎用型の薄膜対応PALS装置 の開発を行っている. 陽電子源には²²Na 密封線源を用いているが、高効率単色 ビーム形成技術、高効率パルス化技術 等の開発により、大型施設とほぼ同じ性 能が得られるようになった.

3. 装置性能等

分析深さ:表面~数 μ m 可変

測定速度: 10分/スペクトル (>5000cps)

時間分解能: 180~220 ピコ秒 測定温度: 室温~400℃ 可変 自動制御、5サンプル自動測定

4. 利用分野

LSI材料: Si, SiO,, ゲート絶縁膜、多層配

線膜、レジスト等

化合物半導体: GaN, SiC等

高分子フィルム:バリア膜、分離膜等

構造材、ディスプレイ材料等

写真1. 装置外観

図1. 測定原理

シリカ系材料

図2 各種材料の測定例

技術を社会へ **建総研** Integration for Innovation

構造物診断用高エネルギーX 線源の開発

放射線イメージング計測研究グループ 豊川 弘之、佐藤 大輔、藤原 健

(要旨)

X線非破壊検査の現場では作業時間の短縮が求められており、そのためにはX線検出器とX線発生装置の性能向上と装置改良が必要である。産総研では、放射線計測技術や電子加速器技術を応用して、X線検出器やX線発生装置の性能を飛躍的に向上させるための研究開発を行っている。本稿ではX線発生装置の開発状況について述べる。

1. X線発生装置について

X線発生装置の構成を図1に示す。電子源、電子加速部、およびX線発生部から構成される。電子を加速する電圧を管電圧と言い、市販装置では100~200kVの直流高電圧を用いることが多い。管電圧の高いX線発生装置から発生するX線はエネルギーが高く、物質を透過する能力が高いために厚いものでも内部を鮮明に可視化できる潜在的な能力がある。通常は、検査対象物の質量や厚さなどによって適切な管電圧を選択する。

図 1. X線発生装置の構成

2. 研究概要

我々は市販装置では達成することが難しい 600 kV 以上の高エネルギーX 線発生装置の開発を、電子加速器の技術を用いて行っている。市販装置との大きな違いは、直流高電圧ではなく、高周波電力を用いて高電圧を発生するため、装置を小型化できることである。市販タイプ(直流高電圧型 X 線発生装置)と電子加速器型 X 線発生装置の基本構成を図 2 に示す。高周波発生装置には、マグネトロンあるいはクライストロン等の電子管ベースの発振器や増幅器が一般的に用いられるが、これにパルス高電圧源を印加することで高周波電力をパルス的に発生させ、この高周波電力を加速管によって再度、電界(電圧)に変換して電子を加速する。高周波発生装置に印加する電圧は数 kV~数 10 kV であるため、直流高電圧型に比べて格段に取り扱いは容易である。

3. 電子加速器の大電流化

高周波電力を電圧に変換する装置を加速管と言う。電子が通過する領域(電子軌道と呼ぶ)に 電界を集中させ、局所的に高い電場勾配を発生させるように設計されている。非破壊検査用小型 電子加速器に用いている C バンド (約 5 GHz) 加速管は外径×高さが約 8 cm×15 cm の円筒形状をしている (図 3)。

(A) 直流高電圧型X線発生装置

図 2. X 線発生装置の種類 (A) 直流高電圧型、(B) パルス高電圧を用いた電子加速器型

図 3. 非破壊検査用電子加速器型 X 線源に用いている C バンド加速管

現在我々が用いている C バンド加速管で加速できる最大電流を見積もるため、荷電粒子輸送計算コード (GPT) ¹を用いて、加速管の入り口から出口までの電子ビーム透過率を評価した。加速空洞や電極の電場形状は、製作図面を基に、二次元電場計算ソフト (Poisson Superfish) ²によって計算した値を用いた。非破壊検査用小型電子加速器の計算に用いた加速管の断面形状を図 4 に示す。図中の一点破線は電子が通過する軌道(電子軌道)を示しており、電子は図中左から右へ進む。本来は電子軌道を中心とした軸対象構造であるが、簡略化のために上部のみ示す。

図 4. 非破壊検査用小型電子加速器に用いる加速管の断面モデル

電子銃の電極部分の断面を図 5 に示す。カソードから出た電子は、陽極との間に形成された電場によって図中右方向に加速される。カソード~陽極間の電場形状を形成するためにカソードを

囲むように電極を配置する。これをウェネルト電極という。ウェネルト電極によって形成された 電場(等電位面)を図 6 に示す。この分布が設計通りに実現されないと電子ビームの品質を著し く劣化させるため精度の高い機械加工が必要である。

この加速管は4つのドーナッツ型形状の空洞(セルと呼ぶ)、1つの半割形状のセル、および各セル間を仕切る4つのスリット型のセルから構成される。Poisson-Superfishで計算した各セルの等電位面の分布を図7に示す。

図 7. 各セルの電場形状

ビーム電流を 300~500 mA とした場合に、X 線発生用ターゲットに到達した電子のエネルギースペクトル、電流、および有効に加速された電子の割合(透過率)を図 8~図 10 に示す。透過率は概ね 60 %程度であり、現状とさほど遜色ないことが分かった。500 mA においてはやや透過率に低下傾向がみられるものの、現状の 2.5 倍の電流を加速することが可能であることが確認された。

図 8. カソード電流 300 mA

図 9. カソード電流 400 mA

図 10. カソード電流 500 mA

4. まとめ

以上の結果から、荷電粒子輸送シミュレーションによって、現在の加速空洞を用いて最大 500 mA の電流が 900 keV まで加速可能であることが確認された。今後、非破壊検査への実用化を目指し、冷却装置等を含めたシステム全体の小型化を検討する。また、新しい加速管や電子銃開発のテストベンチとしても本装置を活用する予定であり、産業用小型電子加速器および X 線発生装置の研究に役立つインフラとして活用していく。また、並行して X 線を画像化する検出器やイメージングデバイスの開発にも注力していく。透過力の高い X 線は厚いコンクリートを良く透過するが X 線イメージングデバイスも良く透過してしまう。そのため、せっかく透過力の高い X 線を用いても、X 線イメージングデバイスの受光量が少ないためにノイズの多い画像となることが多い。更に、小型電子加速器の制御には新しい情報技術を積極的に取り入れる余地が多くあり、加速器等の制御に関するテストベンチとしての利用も推進したい。関係各位の協力に期待する。

参考文献

¹ http://www.pulsar.nl/gpt/index.html.

² https://laacg.lanl.gov/laacg/services/download sf.phtml.

構造物診断用高エネルギーX線源の開発

○豊川弘之、佐藤大輔、藤原 健、放射線イメージング計測研究グループ

1. 研究·開発の背景

X線非破壊検査の現場では作業時間の短縮が求められており、そのためにはX線検出器とX線発生装置の性能向上や軽量化などの装置改良が必要である。我々は放射線計測技術や電子加速器技術を応用して、X線検出器やX線発生装置の性能を飛躍的に向上させる研究を行っている。

2. 研究・開発の内容

X線発生装置は電子源、電子加速部、X線発生部から構成される。我々は高出力かつ高エネルギーX線発生装置を、小型・軽量な筐体にて実現するため、電子加速器をベースとしたテーブルトップ型900 keVのX線発生装置の試作機を用いて、要素技術の試験を行っている。

3. 装置開発の状況

900 keV試作装置で加速可能な最大電流量を、シミュレーションを用いて見積もったところ、現状の最大5倍の電流量が加速できることが確認された。これまでより5倍程度強度の高いX線を発生する装置が実現できる可能性があることが分かった。

4. 今後の予定

今後は、X線発生用ターゲットの改良なども併せて行い、現状比10倍強度のX線を発生する装置の開発を目標として要素技術開発を進める。

図1 X線発生装置の模式図

図2 電子加速に用いた5 GHz帯Cバンド5セル加速 管の等電位線(二次元電磁界解析シミュレーション: Poisson Superfish)

図3 加速された電子のエネルギースペクトル(荷電 粒子軌道解析シミュレーション: GPT)

炭素繊維の異方性を考慮した曲げ特性解析

非破壊計測研究グループ 永井 英幹、藤田 和宏、ト部 啓、岩下 哲雄

要旨

炭素繊維の力学的特性試験方法としては、繊維軸方向引張特性に関する試験以外には規格が規定されていないが、著しい異方性を有する材料であり各方向の異方性データが重要であるため、各方向の特性評価試験の開発を進めている。その異方性を考慮することの重要性を数値解析で確認した結果を紹介する。

1. はじめに

地球温暖化の要因となる CO2 排出量抑制のため移動体の軽量化が望まれて久しい。炭素繊維強化プラスチック (CFRP) は、運輸部門において軽量化による燃費向上に貢献できる高機能材料であり、航空機等で既に多く採用されてきた。そこでは主に連続繊維と熱硬化性樹脂による積層材が用いられている。一方で、近年増えつつある自動車部品への適用においては、成形性やコスト面、リサイクル性が重視されるため、不連続炭素繊維と熱可塑性樹脂の利用が期待されている」。そこでは不連続炭素繊維と熱可塑性樹脂から中間基材を調製し、プレス成形等にて部材が製作される。不連続炭素繊維はさまざまなタイプの変形を受けることが考えられるため、その複合材料の材料設計においては炭素繊維の引張特性だけでなく、様々な方向の力学的特性情報が重要となる。また、近年は均質化法などのマルチスケール解析でミクロ構造を考慮した解析が複合材料でも行われており、解析においても構成する材料それぞれの詳細な特性データが必要とされる場合が増加している。

炭素繊維は著しい異方性を有しており、各方向の力学的特性は、それぞれに適した試験から評価することが望ましいが、繊維軸方向引張試験以外には試験方法が規格化されていない。そこで我々は単繊維の様々な特性評価手法の開発を進めてきた²⁻¹⁰。その中で、曲げ特性については、規格化を念頭に試験の容易な試験装置を新たに設計し、その装置を用いて各種の炭素繊維で三点曲げ試験を行い、繊維の支点間距離依存性を確認した⁶。そこでは曲げ弾性率が引張弾性率と一致しない結果が得られ、異方性の影響と考えられた。

本研究では、三点曲げ試験について力学的特性の異方性を考慮した有限要素法 (FEM) で解析を行い、曲げ弾性率に対する各方向弾性定数の異方性の影響を数値解析で検証した。 比較として、試験規格が存在する繊維軸方向引張弾性率のみを用いた等方性とした場合の解析も行い、異方性データを用いることの重要性を示した。また、解析には、これまで我々が測定してきた単繊維の各試験結果の弾性率値を用い、各測定値の妥当性も確認した。

2. 研究方法

2. 1 三点曲げ試験

まず、解析との比較対象である実測試験について述べる。三点曲げ試験については、既報 6 のとおり行った。試験の概念図を Fig.1 に示す。支持台は、隙間を調整できる 2 枚の金

属板上に支点として 2 本のセラミックファイバーを接着したもので、その上に試料炭素繊維を載せた。先端に丸みを持たせたマイクロプローブによって繊維にたわみを与え、荷重、たわみを計測した。データの解析は、JIS K7074:1988「炭素繊維強化プラスチックの曲げ試験方法」、JIS K7171:2016「プラスチックー曲げ特性の求め方」に準拠し、曲げ弾性率 $E_{\rm f}$ の評価は、下記の式(1)を用いて算出した。

$$E_f = \frac{4 L_{\text{span}}^3}{3 \pi d^4} \cdot \frac{P}{\delta} \tag{1}$$

ここで、 L_{span} :支点間距離,

d : 試料繊維の直径,

 P/δ :荷重-たわみ関係の直線部の初期こう配,

である。なお、既報の試験においては繊維断面を楕円として評価する手法も採っているが、 ここでは、FEM解析モデルを平均繊維径の円形断面であるとして扱うので、断面形状を円形 とする式(1)で評価した場合についての議論を行う。

試験で得られる曲げ弾性率には、支点間距離の影響がみられた。一連の研究 $^{1-10}$ で使用している PAN 系炭素繊維 CF-A の場合、三点曲げ試験を行った支点間距離 $100~\mu m \sim 400~\mu m$ のうち、 $200~\mu m$ 以上では弾性率が約 150~GPa でほぼ一定になるが、支点間距離が短い領域では弾性率が低下した 6 。この支点間距離依存性については、梁断面にせん断変形を許す Timoshenko 梁として扱うこと、せん断変形の影響として説明ができる。一方で、得られた曲げ弾性率が引張弾性率と比べて低い値となったことについては、繊維軸方向の引張と圧縮の弾性率の違いから、中立面が繊維軸の中心からずれることが原因と想定された 6 。それらの影響を調べるために、異方性を考慮した FEM 解析を行った。

2. 2 FEM 解析モデルと解析条件

繊維の曲げ弾性率 E_f の検証のために行った FEM 解析の解析対象領域と解析モデルをそれぞれ Fig.2(a)と(b)に示す。解析に使用したソフトは COMSOL Multiphysics 5.2a である。 繊維を円柱断面として扱い、対称性から、負荷地点で区切り、さらに軸方向に二分割した 1/4 領域を解析対象として、三次元弾性解析を行った。負荷点と支持点については、微小たわみを超える曲げへの対応のため、負荷点と支持点を特定の節点に固定はせず、圧子一炭素繊維間、支持台一炭素繊維間のそれぞれを接触解析として解くこととした。

炭素繊維は、繊維軸直角方向の断面内が等方で繊維軸方向に異方性を有する面内等方性 (transverse isotropy) とし、圧子ならびに支持台は等方性とした。繊維の特性値(弾性係数)については、通常用いられる繊維軸方向引張弾性率 E_L に加えて、各方向の異方性を考慮して、一連の研究で測定されたねじり弾性率 E_L 、繊維軸方向圧縮弾性率 E_R 、繊維軸直角方向弾性率 E_L を用いて解析を行った。使用した E_L の各弾性率値を Table 1 に示

Fig.1 Schematic illustration of three-point bending test of carbon fiber

す。繊維軸方向と繊維軸直角方向との間の横弾性係数 G_{LT} としてねじり弾性率 G を用い、繊維軸直角方向断面内の横弾性係数 G_{TT} には E_{T} の等方性換算値を用いた。ポアソン比は文献値 11 から ν_{LT} を 0.30、 ν_{TT} を 0.38 とした。これらに基づく異方性での解析を行った。比較のため、異方性を考慮しない場合として、炭素繊維を繊維軸方向引張弾性率 E_{L} で等方性とした場合の解析も行った。

Table 1 Mechanical properties used in FEM

1 1						
Properties	CF-A					
Tensile modulus $E_{\rm L}$ / GPa	222					
Torsonal modulus $G - GPa$	15.8					
Axial compressive modulus $E_{\rm AC}$ / GPa	102					
Transverse compressive modulus $E_{\rm T}$ / GPa	18.9					

Fig.2 (a) FE Analysis area for three-point bending test of carbon fiber, (b) FE model.

3 解析結果と考察

三点曲げ試験ならびに FEM 解析で得られた曲げ弾性率を、各支点間距離に対してプロットしたものを Fig.3 に示す。実測結果 (四角)、FEM での等方性解析の結果 (三角)、FEM で異方性を全て考慮した解析の結果 (丸) を示している。

支点間距離依存性としては、2.1で述べたとおり、支点間距離 $L_{\rm span}$ が $150~\mu m$ 以下となるような短い領域において、せん断変形の影響で曲げ弾性率値が低下する支点間距離依

存性があるが、等方性解析、異方性解析のどちらとも、実測値の挙動を再現できている。異方性解析の方が、Gの異方性を反映して、弾性率低下の程度がやや大きくなる。

一方、曲げ弾性率値については、等 方性解析と異方性解析とで挙動に違 いが生じた。等方性解析の場合は、支 点間距離が繊維径に対して十分に大 きい 200 µm 以上の領域においては、 曲げ弾性率が繊維方向引張弾性率 E_L と等しくなる。実測値の曲げ弾性率 は、繊維方向引張弾性率の 2/3 程の

Fig.3 Plots of flexural modulus against span length of experimental results and FEM.

低い値であり、等方性解析の結果は実測値と一致しない。これに対し、異方性を考慮した 解析においては、全ての支点間距離にわたって、実測値と一致する結果が得られた。

このことは、例えば不連続繊維を用いた複合材料のように、繊維軸引張方向以外の変形を受けることが想定される複合材料の設計・解析を行う場合には、繊維の引張特性だけではなく、様々な方向の特性を考慮する必要があることを示している。

なお、曲げ弾性率が軸方向引張弾性率より低くなる挙動については、各方向異方性の中で、軸方向圧縮弾性率 E_{AC} が軸方向引張弾性率 E_{L} と差異があることの影響が主であることを報告している 12 。このことから、支点間距離 $200\,\mu m$ 以上での曲げ弾性率測定値から、軸方向圧縮弾性率の値を推定できると考えられ、現在取り組んでいる。

4. まとめ

PAN 系炭素繊維単繊維の三点曲げ試験を FEM 解析で検証した結果、以下のことが明らかとなった。

曲げ弾性率については、測定で得られた各方向弾性率の異方性を全て考慮することで、実測とほぼ一致する結果が得られた。炭素繊維に高い異方性が存在することは従来から知られているが、この結果は、不連続繊維を用いた複合材料の設計時等には、繊維の引張特性だけでなく様々な方向の特性値を考慮する必要性を示している。

また、これらの各方向の異方性を考慮した解析結果と実測試験結果との一致は、これまでの測定結果に一定の妥当性を与えるものと考えられる。

今後は曲げ試験結果から各方向特性値を推定する手法の開発を進めていく。

- 1 平成 20 年度 平成 24 年度成果報告書「サステナブルハイパーコンポジット技術の開発」, pp.1-6 (2013) 新エネルギー・産業技術総合開発機構.
- ² 岩下哲雄, 諸星圭祐, 藤田和宏, 材料試験技術, **57**, 134 (2012).
- ³藤田和宏, 小島実希子, 岩下哲雄, 材料試験技術, **58**, 143 (2013).
- 4 諸星圭祐,藤田和宏,岩下哲雄,材料試験技術, 59, 142 (2014).
- 5 杉本慶喜, 岩下哲雄, 影山和郎, 材料試験技術, 60,52 (2015).
- ⁶ 岩下哲雄, 諸星圭祐, 卜部啓, 藤田和宏, 材料試験技術, **61**, 261 (2016).
- 7藤田和宏, 岩下哲雄, 澤田吉裕, 材料, 65, 573 (2016).
- 8藤田和宏, 岩下哲雄, 北條正樹, 炭素, No.278, 111 (2017).
- 9 岩下哲雄, 永井英幹, 杉本慶喜, 藤田和宏, 強化プラスチック, 64, 195 (2018).
- ¹⁰ 永井英幹, 杉本慶喜, 藤田和宏, 岩下哲雄, 材料試験技術, **61**, 136 (2016).
- ¹¹ R.E.Smith, J. Applied Physics, **43**, 2555 (1972).
- 12 永井英幹,藤田和宏,卜部啓,岩下哲雄,JCCM-10 要旨集,1D-05 (2019).

炭素繊維の異方性を考慮した曲げ特性解析

○永井 英幹、藤田 和宏、卜部 啓、岩下 哲雄 非破壊計測研究グループ

1. 研究の背景

自動車部品への炭素繊維強化プラスチック(CFRP)適用にあたっては、成形性やコスト面から不連続繊維と熱可塑性プラスチックの利用が期待されている。炭素繊維は著しい異方性を有しているので、このような複合材料の設計・解析時には炭素繊維の様々な方向の材料力学特性が必要となる。そこで我々は、炭素繊維単繊維の様々な特性評価手法の開発を進めてきた。

2. 研究の内容

本研究では、炭素繊維の異方性の影響を議論するため、PAN系炭素繊維単繊維の三点曲げ試験についてFEM解析を行った(図1,2)。 算出された曲げ弾性率を実測値と比較し、異方性の影響を調べた。解析に使用する各方向弾性定数には、通常用いられる繊維軸方向引張弾性率 E_{L} に加えて、これまでの研究で我々が測定したねじり弾性率G、繊維軸方向圧縮弾性率 E_{AC} 、繊維軸直角方向弾性率 E_{T} の値を用い、異方性を考慮した解析を行った。

3. 考察•議論

図3に示すように、等方性FEM解析では、支点間距離150µm以下で弾性率が低下する実測値の挙動は再現できるものの、弾性率値が一致しない。それに対し、異方性を考慮した解析では弾性率値もよく一致する結果が得られ、異方性の影響が確認できた。また、これにより我々が測定してきた各方向物性値の妥当性も示すことができた。

図1 解析対象領域

図2 解析メッシュ(1/4モデル)

図3 曲げ弾性率の支点間距離依存性

4. 結論および今後の展開

炭素繊維において、弾性定数の異方性が曲げ弾性率に対して大きな影響を及ぼすことが示され、複合材料の設計・解析時に異方性を考慮することの重要性が数値解析からも確認された。今後は曲げ試験結果から各方向特性値を推定する手法の開発を進めていく。

機械学習を適用した先端超音波探傷技術の開発 非破壊計測研究グループ 山本 哲也、叶 嘉星、遠山 暢之

要旨

これまで目視により行っていた超音波非破壊検査における欠陥の診断を機械学習を適用して新たに判定を行うことを試みた。サイズ・深さの異なる円孔・スリットを有する17種類のステンレス鋼板に欠陥のないステンレス鋼板を加えた18種類の試験片を使用して可視化した計6304枚のスナップショット画像(静止画)により超音波画像データベースを構築し、欠陥の有無に関して判別を行った。画像解析法としては、特徴量抽出や統計識別を手動で設計する伝統的機械学習法とそれらを自動で行う深層学習法とをそれぞれ検討した。結果として、極めて良好な欠陥検出率が得られており、本手法適用の有効性が検証された。

1. はじめに

現在、日本は少子高齢化で人手不足問題が深刻な状況になってきている。社会保障・人口問題研究所の将来推計によると、15~64歳の生産年齢人口は1995年の8,716万人をピークとして、2030年には6,773万人、2060年には4,418万人にまで減少すると見込まれている。今後は業種・職種を問わず、慢性的に人手が足りない事態が生じることは不可避な状況である。他方、ほぼ時を同じくして、橋梁やトンネル等の社会インフラのほぼ半数以上が2030年には築50年超を迎えることが予測されており、老朽化対策への課題が浮き彫りになってきている。当然のことながら、非破壊検査に関して専門的な知識や技能を有する人材の育成・確保は喫緊の課題となっており、人工知能等を適用した社会インフラ検査の自動化・高度化は急務である。

当グループでは、レーザーにより励起された超音波の伝搬現象をその場でほぼリアルタイムに計測・再現して、実構造物や各種部材に内在する欠陥を高速診断できるレーザー励起超音波検査システムの研究開発を行っている。被検体を伝搬する超音波を可視化することで非破壊検査に関する専門的知識や特殊技能、豊富な経験等を有していなくても容易に欠陥診断を行うことができることが大きな特長の一つである。本手法において、従来、可視化した画像を直接見ることで行っていた作業を機械学習を適用した判別法に置き換えることができれば、欠陥評価の自動化・高速化に加え、人が介在することにより生じる見逃し・見落とし等のヒューマンエラーをも積極的に回避することが可能となる。

非破壊検査に関する展示会で人工知能の専門家である東大教授の松尾氏の講演に参加したことがあるが、その中で強く印象に残っているのが、人工知能がいわゆる「眼」を持つようになったという説明であった。すなわち、人工知能においてより高度な画像診断技術が可能になったという事実を生命体の進化の過程である「カンブリア爆発」になぞらえて説明されており、近い将来にこの進化の過程と同じような爆発的な出来事がテクノロジーの分野においても起こり得るのではないかという展望に関してであった。我々の行っている超音波伝搬画像の判定による非破壊検査は、その画像の目視による診断が肝要な点であり、いわゆる「眼で見て判断」することができるようになった人工知能技術は、最も相

応しい適用対象技術である。

本シンポジウムでは、当グループで行っている超音波伝搬画像による診断・判定に機械 学習の適用を試みたのでここに紹介する ^{1,2}。機械学習に基づく画像解析法としては、特徴 量抽出や統計識別を個別に手動で設計する伝統的機械学習法とそれらの一連の作業を自 動で行う深層学習法の検討を行った。結果として、極めて良好な欠陥検出率が得られてお り、本手法適用の有効性が検証されている。

2. 超音波画像データベース構築

超音波画像データベース構築のために、300×300×3 mm のステンレス鋼板の中央にサ イズ・深さの異なる円孔あるいはスリットを導入した 17 種類の試験片と、同じく 300× 300×3 mm の欠陥のないステンレス鋼板試験片を計測に使用した。5 か所の異なる位置(欠 陥に対して 0°~90°まで 22.5°間隔) に斜角探触子(1 MHz、90°) を配置し、試験片中央 部 100×100 mm の領域をレーザー照射して画像データを取得した。 円孔を有する試験片に 関しては、3 種類の大きさの円孔(1 mm、 3 mm、 5 mm)に対して、貫通したタイプ と深さ半分(1.5 mm)まで孔を開けた非貫通タイプの試験片を用意した。スリットを有す る試験片に関しては、貫通した2種類のスリット長(5mm、10mm)を有する試験片と貫 通させずに深さ半分(1.5 mm)までスリットを切った3種類のスリット長(3 mm、5 mm、 10 mm) を有する試験片を用意した。非貫通の円孔・スリットを有する試験片に関しては、 表面と裏面の両面をそれぞれ計測することで、欠陥を有する試験片に関しては 17 種類の 板状試験片を取り扱うことになる。この 17 種類の円孔・スリットを有するステンレス鋼 板に欠陥のない同様なステンレス鋼板を加えた計 18 種類の試験片を計測することにより、 「欠陥あり」の画像 3069 枚、「欠陥なし」の画像 3235 枚の計 6304 枚で構成される超音波 画像データベースを構築した。ここで、「欠陥あり」の画像とは、欠陥を有する試験片にお いて入射波が欠陥到達後のスナップショット画像であり、「欠陥なし」の画像とは、欠陥の ない試験片におけるすべてのスナップショット画像と、欠陥を有する試験片において入射 波が欠陥まで到達しておらず散乱現象が生じていないスナップショット画像も「欠陥なし」 に分類するものとしている。上記の 18 種類の各試験片番号と画像として欠陥のあり/なし を全画像にラベリングしたものが超音波画像データベースとなる。なお、認識精度向上の ため、取得画像に対して回転や傾斜、移動、部分的なブロッキング等のデータ拡張(Data Augmentation)を行っているので、訓練データやテストデータとして実際に適用する画像 データの枚数は、もっとずっと多い量になる。

3. 機械学習の適用・考察

図1に、超音波画像認識パイプラインを示す。画像解析法としては、特徴量抽出や統計識別を手動で設計する伝統的機械学習法(Shallow Learning)とそれらを自動で行う深層学習法(Deep Learning)とをそれぞれ検討した。伝統的機械学習法としては、HOG(Histogram of Oriented Gradients)、LBP (Local Binary Pattern)、HLAC (Higher-Order Local Auto-Correlation)、GLAC(Gradient Local Auto-Correlation)の4つの手法を適用し、深層学習法としては、畳み込みニューラルネットワーク(CNN, Convolutional Neural Network)を利用した超音波画像解析のベースライン深層学習モデル(USseqNet, Ultrasonic Sequential Net)と超音波画像

解析のために独自に最適化した深層学習モデル(USresNet, Ultrasonic Residual Net)の2つの手法を用いた。

図 1. 超音波画像認識パイプライン

伝統的な機械学習法に関しては、超音波画像解析に有望と思われる4種類の局所特徴量を用いる手法を適用することを試みた。いずれも典型的な画像解析手法であり、局所的な輝度の差や勾配、曲率等に関する情報を活用して特徴量抽出を行い、ガウシアンカーネルを用いたサポートベクターマシン(SVM, Support Vector Machine)による統計識別を経て結果の出力までのプロセスを個別に手動で行っている。一方、深層学習法に関しては、それらの一連の作業について人を介在させずに自動で行うところが異なる点である。

図2に、ベースライン深層学習モデルと独自に最適化した深層学習モデルを示す。前者のベースライン深層学習モデルは、連続する4つの畳み込み層 C1…C4で構成され、畳み込み演算後にバッチ正規化 B1…B4 および活性化関数 R1…R4 を適用している。3 層目と4 層目の一連の処理の最後に、それぞれ、特徴マップのサイズ縮小を行うプーリング層 P3 と、過学習(過剰適合)を抑制するためのドロップアウト層 D4 を適用し、最終的に全結合層 FC を経て分類層 CL(ソフトマックス関数)において欠陥の有無の判定を行っている。一方、後者の深層学習モデルにおいては、より層を深くした7つの畳み込み層 C1…C7で構成されるモデルで、スキップ構造である3つのショートカットユニット A1…A3 と残差リンク Re1…Re3 を導入し、畳み込みからの出力とショートカットした出力を足し合わせることで、より深い層を構成する際に勾配が小さくなる問題(勾配消失問題)を軽減している。前者のモデルと同じく、畳み込み演算後にバッチ正規化 B1…B7 と活性化関数 R1…R7の適用を行い、さらに、全結合層 FC の直前にドロップアウトユニット Dr3 を配置して同じく過学習(過剰適合)を防ぐとともに、最終的に分類層 CL(ソフトマックス関数)で欠陥の有無の出力を行っている。

表1に本研究で用いた各種画像解析法における欠陥検出率を示す。表に示した値は、欠陥を有する17種類の各試験片に対して交差検証(Cross Validation)を行っており、試験片のそれぞれをテストデータ、それ以外全てを訓練データとして上記の各手法を適用させた際のその各手法に対する平均値である。なお、深層学習法における学習モデルの最適化には慣性付き確率的勾配降下法(SGDM, Stochastic Gradient Descent with Momentum)を適用している。表から明らかなように、伝統的機械学習法と比較して深層学習法においてより高い検出率が得られている。超音波画像解析のために独自に最適化した深層学習モデルUSresNetにおいては、約96%という最も高い欠陥検出率が得られており、本手法適用の有

効性が検証されている。

なお、17種類の欠陥を有する試験 片に関する上記の各種画像解析法に おける個別の試験片に対する欠陥検 出率は、参考文献2に示している。 円孔を有する試験片に関しては、伝 統的機械学習法と深層学習法の欠陥 検出率の差が比較的大きいケースが 多く、深層学習法の方が基本的に優 れた欠陥検出率を有している。一方、 スリットを有する試験片に関して は、伝統的機械学習法と深層学習法 とであまり差は見られず、いずれに おいても極めて良好な欠陥検出率が 得られている。機械学習を適用した 際の判定に要する計算時間に関して は、事前に学習を行っていれば即時 に結果を得ることができ、検査現場 においても十分に実用に耐えられる ものである。

4. むすび

従来、目視により行っていた検査 画像の診断を機械学習の手法を用い

図 2.(a) ベースライン深層学習モデル

図 2.(b) 最適化した深層学習モデル

表 1. 各種画像解析法による欠陥検出率(%)

伝統的機械学習			深層学習		
HOG	LBP	HLAC	GLAC	USseqNet	USresNet
83.37	83.77	90.95	91.06	93.76	95.68

て判別を行うことを試みた。中央にサイズ・深さの異なる円孔あるいはスリットを導入した 17 枚のステンレス鋼板試験片と欠陥のない 1 枚のステンレス鋼板試験片を使用して可視化したスナップショット画像を用いて判定を行った。画像解析法としては、特徴量抽出や統計識別を手動で設計する伝統的機械学習法とそれらを自動で行う深層学習法とをそれぞれ検討した。結果として、極めて良好な欠陥検出率が得られており、本手法適用の有効性が検証された。欠陥の有無の判別だけでなく、欠陥の位置標定やサイジング、さらには、稼動中の実構造物への適用等が今後の課題である。

¹ 遠山他, 非破壊検査 68 (7), 296 (2019).

² J.Ye, et al, Sensors **18** (11), 3820 (2018).

機械学習を適用した 先端超音波探傷技術の開発

〇山本 哲也、叶 嘉星、遠山 暢之 非破壊計測研究グループ

1. 研究開発の背景

レーザー励起超音波の伝搬現象をその場でほぼリアルタイムに計測・再現して、実構造物や各種部材に内在する欠陥を高速診断できる検査システムの研究開発を行っている。検査業務における人手不足解消・検査労力軽減、目視検査における見逃し等のヒューマンエラー回避のために、機械学習を適用した先端超音波探傷技術の開発を行ったのでここに紹介する^{1,2}。

2. 計測手法・画像解析

超音波画像データベース構築のために、300×300×3mmのステンレス鋼板の中央にサイズ・深さの異なる円孔あるいはスリットを導入した試験片を使用した。欠陥に対して、5か所の異なる位置に斜角探触子を配置し、試験片中央部100×100mmの領域を計測・可視化した。

画像解析法としては、特徴量抽出や統計 識別を手動で設計する伝統的機械学習法 とそれらを自動で行う深層学習法の検討を 行った。伝統的機械学習法としては、 HOG、LBP、HLAC、GLACの4つの手法を 適用し、深層学習法としては、畳み込み ニューラルネットワークを利用した超音波画 像解析のベースライン深層学習モデルと超 音波画像解析のために独自に最適化した 深層学習モデルの2つの手法を用いた。

3. むすび

右表に示すように、極めて良好な欠陥検出率(USresNetにおいて約96%)が得られており、本手法適用の有効性が検証された。

- 1 遠山他, 非破壊検査 68 (7), 296 (2019).
- ² J.Ye, et al, Sensors **18** (11), 3820 (2018).

図1. 超音波画像認識パイプライン.

図2a. ベースライン深層学習モデルUSseqNet.

図2b. 最適化した深層学習モデルUSresNet.

表1. 各種画像解析法による欠陥検出率(%).

 伝統的機械学習			深層学習		
HOG	LBP	HLAC	GLAC	USseqNet	USresNet
83.37	83.77	90.95	91.06	93.76	95.68

URL:https://unit.aist.go.jp/rima

インフラ検査用X線非破壊検査技術の開発

X線・陽電子計測研究グループ 加藤 英俊 放射線イメージング計測研究グループ 藤原 健 分析計測標準研究部門 鈴木 良一

要旨

効率的なインフラ検査を実現するため、針葉樹型カーボンナノ構造体冷陰極電子源を用いた小型・軽量・低消費電力な可搬型 X 線源、保温材を取り外さずに検査が可能な配管肉厚計測用 X 線システム、大型構造物の検査が可能な大面積 X 線イメージング装置の実用化開発を行った。

1. はじめに

高度成長期に建設・製造された産業インフラは、築 40 年が経過した現在、腐食や減肉が問題となっており、適切な維持管理が求められている。腐食や減肉を起こしやすい配管の分岐部や曲線部などは、保温材を剥がして部分検査及び修繕が行われているが、配管の総長は百万 km 以上にも及び、膨大な管理対象箇所に対応した効率的な非破壊検査技術が求められている。非破壊検査には放射線透過法や超音波探傷法などがあるが、X線透過法は構造物の透過イメージから内部情報を視覚的に得ることができる優位性を持ち、構造物診断の他、医療診断、工業製品検査、空港の手荷物検査など多くの分野において利用されている。インフラ構造物のX線検査では、数 cm 厚の金属を透過して検査が可能なこと、検査対象物が密に配置されており狭所に X 線源・検出器を配置して検査が可能なことなどが要求される。さらに、効率的なインフラ検査を実現するためには、ロボット等に搭載した検査の自動化、検査時間の短縮化が必要である。我々はこれら技術課題を解決する X 線非破壊検査技術の高度化に取り組んできた。

2. X線非破壊検査技術の開発

産総研では針葉樹型カーボンナノ構造体 (CCNS) 冷陰極電子源を用いた小型・軽量・低消費電力な可搬型 X 線源の開発を行っており、現場での利便性が高い、バッテリー駆動可搬型高エネルギーX 線源の開発 ¹ に成功してきた。また、効率的なインフラ診断を実現するため、NEDO「インフラ維持管理・更新等の社会課題対応システム開発プロジェクト」において、X 線非破壊検査技術の高度化を進め、保温材を取り外さずに検査が可能な配管肉厚計測用 X 線システム、大型構造物の検査が可能な大面積 X 線イメージング装置の実用化開発を行った。これらの X 線非破壊検査技術について紹介する。

2.1 非破壊検査用可搬型 X 線源

産総研で開発した可搬型 X 線源は、電子源に CCNS (図1)を使用していることに特徴

を持つ。電子源に従来使用されているフィラメントなどの熱陰極は加熱して電圧を印加する必要があったが、CCNSは電圧を印加するのみで、先端に電界が集中し、電界電子放出現象により電子が放出される。CCNSは先端がナノチューブと同等の曲率を持ち、基板側では太く、基板との結合が強固であり、100 mA/cm²

図 1. 針葉樹型カーボンナノ構造体 (CCNS)

以上の高い電流密度の電子を放出でき、かつ、長寿命²である。CCNSを使用した非破壊検査用可搬型 X線源の開発を進め、最大管電圧 150 kV、最大管電流 10 mA と高出力でありながら、厚さ7 cm 以下、総重量 2.5 kg 以下の小型軽量な非破壊検査用パルス X線源²を実現した(図 2)。 X線出射方向(放射線マークの位置から出射)に対する X線源サイズが7 cm 以下であり、今まで検査が難しかった狭い場所での X線非破壊検査が可能になった。また、開発した X線源は待機電力が不要で総合的なエネルギー消費が低いことから、USB電源や乾電池でも駆動できる。単三乾電池一本で 100 回以上の X線出射が可能である。商用電気配線の有無といった場所の制約

図 2. 非破壞検査用可搬型 X 線源

なしに使用可能であるため、可搬型 X 線源としての利便性が高い。開発を進めた現在、鉄厚 7 cm 以上の透過が可能な管電圧 200 kV、バッテリーで駆動可能な低消費電力、X 線源サイズが 7 cm 以下の小型サイズ、総重量が 3 kg 以下と軽量、通常の X 線検査で 10 年以上使用可能な長寿命などの特徴を有する可搬型 X 線源 ^{3,4} を実現するに至った。

2.2 配管肉厚計測用 X 線システム

小型・軽量・低消費電力・長寿命・高エネルギーの特徴を有する可搬型 X 線源を実現したことにより、ロボットに搭載し、膨大な検査対象箇所に対応した X 線検査が可能となった。保温材付 6 インチ配管の直管部を対象とし、肉厚計測を行う自走ロボットを図 3 に示す。本手法では、肉厚部を中心とした配管接線方向の対称位置に X 線源と検出器を配置し、 X 線減衰率の変化から配管内面及び外面位置を求め、肉厚を導出する。配管内面を透過する X 線が最も減衰率が大きく、X 線が透過しなければならない厚さは 6 インチ配管の肉厚 7 mm において鉄厚 7 cm 相当となる。そのため、鉄厚 7 cm 以上の透過が可能な管電圧 200 kV の X 線源を採用している。ロボットは配管を中心として X 線ユニット (X 線源と検出器)を回転させる機構を持ち、X 線ユニットを回転させることで配管周方向の肉厚情報が得られる。配管軸方向の肉厚情報についてはロボットが保温材上を走行することで得られる。この際、保温材と配管の中心はかならずしも一致せず、配管と X 線ユニットの位置関

係は肉厚計測の精度に影響することから、配管中心位置や配管軸方向の平行を調整する機構を持たせている。また、これらロボットに搭載したすべての機構及び X 線ユニットはバッテリーで駆動、ロボットや X 線システムの制御、測定結果のデータ通信は無線となっている。ロボットを使用し、外面部に減肉を模擬した配管(図 3 右上)の外径計測試験を実施、得られた結果は減肉部の凹部だけでなく、配管表面にできた凹凸まで再現していることがわかる。一方、肉厚計測では数種類の肉厚をもつ配管を製作し試験を実施、図 3 右下に示すように肉厚約 7 mm までの配管について、保温材を剥がして検査を行う現行の超音波計測と同等の 0.3 mm 精度で保温材を剥がさずに肉厚が計測できることを確認した。現行の検査にかかるコストの大部分が、足場建設と保温材にかかるものであり、X 線による本手法を用いることで、コストを大幅に抑えることが可能である。

図3. 配管検査用自走ロボット

2.3 大面積 X 線イメージング装置

検査対象となるインフラ構造物が厚く、重くなると、透過する X 線量が減少し、現行の検査では長時間露光が可能な X 線フィルムやイメージングプレートが使用されている。しかし、X 線フィルムとイメージングプレートは一回の撮影毎に現像が必要であり、検査には多大な労力と時間を要していた。そのため、その場でリアルタイムに画像が得られるデジタル X 線イメージング装置が求められているが、現行のイメージング装置では規模の大きなインフラの検査は困難であった。そこで、産総研では大型構造物の X 線検査が可能な高エネルギーX 線に対応した大面積・高感度デジタル X 線イメージング装置 4 の開発を行い、画素サイズ 139 $^{\mu m}$ 、有感エリア 43 cm $^{×35}$ cm $^{(800)}$ $^{\pi m}$ * $^{$

X線画像を取得できるようになった。また、デジタル画像をリアルタイムで取得・確認できるため、規模が大きい産業インフラの効率的な検査に有効である。開発したデジタル X線イメージング装置と CCNS 電子源を用いた小型 X線源を組み合わせ、大型バルブの X線撮影を図 A に示すように配置して実施した。得られた X 線イメージより、鉄数 cm 厚相当の大型バルブ内部のバルブ開閉状況が 1 回の撮影で確認できる。 X 線イメージング装置の高度化(高感度、長時間積分)により、数 cm 厚の鉄製構造物は 1 秒以下の短時間で X線撮影ができ、鉄 10 cm 厚までの大型構造物の X 線撮影を可能にした。また、一度に広範囲を検査できるため、大型バルブやプラント配管など、厚みのある金属部材の欠陥箇所を効率的に検知でき、従来の X 線フィルムやイメージングプレートに比べ、検査時間は 1/10以下に短縮可能である。さらに、検査に必要な X 線量を大幅に低減できるため、小型 X線源との組み合わせで、漏洩する X 線量を 1/100 以下に抑え、作業員の被ばく量を低減することが可能となった。

図4. 開発した小型 X 線源と X 線イメージング装置を用いた大型バルブの X 線撮影

3. 今後の展開

X線非破壊検査技術の高度化を進めるとともに、民間企業と連携し、開発した技術を老 朽化したインフラの維持管理に役立てていく。

参考文献

- ¹加藤英俊、鈴木良一、プレス発表「小型軽量な非破壊検査用パルス X 線源を開発」2014/06/03.
- ² H. Kato, B. E. O'Rourke, and R. Suzuki, Diamond & Related Materials **55**, 41 (2015).
- ³鈴木良一、加藤英俊、藤原健、青木徹、プレス発表「インフラ点検ロボットに搭載できる高エネルギーX線非破壊検査装置を開発」2016/12/21.
- ⁴藤原健、鈴木良一、加藤英俊、プレス発表「インフラ検査用の大面積・高感度デジタル X 線イメージング装置を開発」2019/04/22.

インフラ検査用X線非破壊検査技術の開発

○加藤 英俊¹、藤原 健²、鈴木 良一³ X線・陽電子計測研究グループ¹、放射線イメージング計測研究グループ²、 分析計測標準研究部門³

1. 研究・開発の背景

高度成長期に建設された産業インフラは、腐食や減肉が問題となっており、 膨大な管理対象箇所に対応した効率的な検査技術が求められている。

2. 研究・開発の内容

本研究開発では、小型・軽量な可搬型X線源、配管肉厚計測用X線システム、 大面積・高感度X線イメージング装置の実用化開発を行った。

可搬型X線源(カーボンナノ構造体を使用)

- •小型軽量
- •バッテリー駆動
- •長寿命

X線源仕様

- •最大管電圧: 200 kV
- •最大管電流: 10 mA •パルス幅: 1 ~ 100 ms
- ・寿命: 1000万ショット以上
- ・電源: USB5Vなど ・総重量: 数kg

図1.非破壊検査用X線源

X線システム

・保温材を剥がさずに配管の肉厚計測が可能

図2.配管検査用自走ロボット

X線イメージング装置

- ・鉄10 cm厚のX線撮影が可能
- ・大型バルブ(鉄数cm厚)などが1秒以下の 短時間で撮影可能
- ・検査に必要なX線量を大幅に低減

図3. 開発したX線源とX線イメージング装置を用いた大型バルブのX線撮影

3. 今後の展開

X線非破壊検査技術の高度化を進めるとともに、民間企業と連携し、開発した技術を老朽化したインフラの維持管理に役立てていく。

本研究は、NEDOインフラ維持管理・更新等の社会課題対応システム開発プロジェクトの成果である。

音響測定器の技能試験

音響超音波標準研究グループ 山田 桂輔、高橋 弘宜、堀内 竜三

要旨

国内において一般ユーザが使用する音響測定器の校正は、計量法トレーサビリティ制度(JCSS 制度)の下、「登録事業者」と呼ばれる計測器メーカや校正機関が実施している。登録事業者は国家標準を維持する産総研と一般ユーザの間をつなぐ重要な役割を担っており、登録事業者の校正能力が不十分ならば一般ユーザの測定器の信頼性は確保できない。そのため登録事業者は「技能試験」と呼ばれる校正能力の評価試験に定期的に参加している。産総研は国家標準の維持供給だけでなく技能試験における「正解」に相当する技能試験参照値の付与を通じて、音響測定のトレーサビリティ体系維持の一翼を担っている。

1. まえがき

ある測定器が校正(定量的基準との比較測定の結果とその不確かさ「を与える行為)の 連鎖によって国家標準に関連付けられる、という性質をトレーサビリティと言い、そのよ うな測定器は信頼性の保証を国家標準までトレース可能である。本稿では、国内における 音響測定器のトレーサビリティと、トレーサビリティ制度を支える登録事業者の技能試験 について紹介する。

2. 音響測定器のトレーサビリティ

社会において音響測定の信頼性が特に重要となるのは、ある地点での騒音(人が不快なものとして認識する音)の大きさが問題となる場合である。そのため、空間中のある点における、音による圧力の大気圧からの変動分である音圧が測定されている。音圧の精密測定に用いられる測定機器はサウンドレベルメータ(騒音計)(図 1(a))及び計測用マイクロ

図 1. 音響測定に用いられる測定器の例

(a) サウンドレベルメータ (騒音計)、(b) 計測用マイクロホン、(c) 音響校正器

図 2. 音響測定器のトレーサビリティ

ホン (図 1(b)) である。また、これらの機器の測定現場での安定性チェックのために、音響校正器 (図 1(c)) が用いられている。

音響測定の信頼性を確保するためには、これらの音響測定器のトレーサビリティが確保されていなくてはならない。図2に音響測定器のトレーサビリティの階層を示す。音の国家標準は、産業技術総合研究所(産総研)が開発・維持を行ってきた「標準マイクロホン音圧相互校正装置」である。産総研は国家標準を用いて計測器メーカや校正機関の所有する標準マイクロホンの校正を行い、それを用いて計測器メーカや校正機関が一般ユーザの音響測定器(計測用マイクロホン、サウンドレベルメータ、音響校正器)の校正を行っている。

3. 技能試験

上に述べたように、国内において一般ユーザが使用する音響測定器の校正は、計測器メーカや校正機関が実施している。計量法トレーサビリティ制度(JCSS 制度)の下、このような産総研と一般ユーザの中間に位置する事業者は「登録事業者」と呼ばれる。登録事業者は産総研と一般ユーザとの間をつなぐ重要な役割を担っており、登録事業者の校正能力が不十分ならば一般ユーザの測定器の信頼性は確保できない。

そこで、登録事業者は定期的に「技能試験」へ参加して校正能力を確認している。技能試験とは、登録事業者の間で試験品目の持ち回り試験を実施し、参加者のパフォーマンスの評価を行うものであり、JIS Q 17043 (ISO/IEC17043)「適合性評価技能試験に対する一般要求事項」²に基づいて実施される。技能試験は約4年に1度開催されるが、音響測定器においては、2018年度に8社の登録事業者が参加してサウンドレベルメータ、計測用マイクロホン、音響校正器を対象とした技能試験を実施した。

技能試験における登録事業者の校正能力の確認は、登録事業者が測定した試験結果と「正解」に相当する技能試験参照値とを比較することで行われる。具体的には、以下の式により算出された En数と呼ばれる値により参加事業者のパフォーマンスは評価される。

$$E_n = \frac{x-X}{\sqrt{U_{\rm lab}^2 + U_{\rm ref}^2}}$$
 (1) $x:$ 参加者の結果、 $U_{\rm lab}:$ 参加者の結果の拡張不確かさ $X:$ 技能試験参照値、 $U_{\rm ref}:$ 技能試験参照値の拡張不確かさ

 $|E_n| \le 1$ であれば、その参加者のパフォーマンスが満足なものであることが示される。

4. 技能試験への産総研の寄与

技能試験参照値は、一般に技能試験へ参加する登録事業者より上位の機関による校正値が採用される。音響測定器の技能試験においては、産総研が持ち回り試験に使用する測定器(仲介器)の校正を実施し、技能試験参照値を付与している。なお、音響測定器の技能試験は1年程度に渡るため、仲介器の校正値変動を監視する目的で技能試験実施期間中と終了後にも同様の校正を実施している。

校正により技能試験参照値として付与されるのは、サウンドレベルメータの自由音場レスポンスレベル、計測用マイクロホンの自由音場感度レベル、音響校正器の音圧レベルである。サウンドレベルメータおよび計測用マイクロホンの校正は、あらかじめ音圧感度から音場感度を求めた³標準マイクロホンと被校正器物を、自由音場(音の反射の無い空間)と見なせる無響室において置換比較する比較校正法^{4,5}によって行う(図 3(c))。音響校正器の校正は、音圧感度が校正済みの標準マイクロホンを用いて、音響校正器が発生する音圧レベルを測定することにより行う⁶(図 3(d))。それぞれの校正において必要となる標準

図3. 産総研での音響測定器の校正による技能試験参照値の付与

マイクロホンの音圧感度は、国家標準である標準マイクロホン音圧感度校正装置による、音響カプラを用いた相互校正法⁷により求められる(図 3(a)、(b))。

参考文献

- ¹ ISO, Guide to the Expression of Uncertainty in Measurement (1995)
- ² JIS Q 17043:2011, 適合性評価技能試験に対する一般要求事項
- ³ IEC TS 61094-7:2006, Measurement microphones Part 7: Values for the difference between free-field and pressure sensitivity levels of laboratory standard microphones
- ⁴ IEC 61094-8:2012, Measurement microphones Part 8: Methods for determining the free-field sensitivity of working standard microphones by comparison
- ⁵ JIS C 1509-2:2018, 電気音響-サウンドレベルメータ(騒音計)- 第2部:型式評価試験
- 6 JIS C-1515:2004, 電気音響 -音響校正器-
- ⁷ IEC 61094-2:2009, Measurement microphones Part 2: Primary method for pressure calibration of laboratory standard microphones by the reciprocity technique

音響測定器の技能試験

○山田桂輔、高橋弘官、堀内竜三 音響超音波標準研究 グループ

|1. 音響測定の信頼性確保

騒音測定をはじめとする音響測定の信頼性を確保するには、使用する音響測定器が正しく校正されていなければならない。国内において一般ユーザが使用する機器の校正は、計量法に基づく計量法トレーサビリティ制度(JCSS制度)の下、「登録事業者」と呼ばれる測定器製造メーカや校正を専業とする団体などが実施している。登録事業者はNMIJと一般ユーザとの間をつなぐ重要な役割を担っており(図1)、校正能力が不十分ならば一般ユーザの測定器の信頼性は確保できない。

図2:トレーサビリティ階層

2. 技能試験

登録事業者の校正能力は約5年に1度開催される「技能試験」により確認される。音響測定器の場合、サウンドレベルメータ(図2(a))の自由音場レスポンスレベル、計測用マイクロホン(図2(b))の自由音場感度レベル、音響校正器(図2(c))の音圧レベルの3量目が対象となる。これら3つの音響計測器を仲介器として、登録事業者が測定した試験結果と「正解」に相当する技能試験参照値とを比較することで登録事業者の校正能力が確認される。

3. 技能試験への産総研の寄与

仲介器の技能試験参照値は、当グループが仲介器の校正を実施することにより付与している。音響測定器の技能試験は1年程度に渡るため、仲介器の校正値変動を監視する目的で技能試験実施期間中と終了後にも校正を実施している。

図2: 音響測定器の技能試験における試験品目 (a):サウンドレベルメータ(騒音計)、(b):計測用マイクロホン、(c):音響校正器

URL:https://unit.aist.go.jp/rim

医用超音波機器の安全性確保に資する

広帯域超音波瞬時音圧の計測原理の有効性検証 音響超音波標準研究グループ 千葉 裕介、吉岡 正裕、堀内 竜三

要旨

超音波診断装置で用いられる広帯域超音波の音圧を高めることで診断画像の画質は向上するが、安全性確保のために設定された規制値を超過してはならない。そのため、上限に近い瞬時音圧をより精密に得るための新たな計測技術が必要とされている。そこで、我々はハイドロホン感度の振幅及び位相の周波数特性を用いた広帯域超音波の瞬時音圧計測法の有効性を検証した。その結果、現行の計測法と比べて、感度の周波数特性が異なる4つのハイドロホンを用いて計測したピーク正音圧のばらつき(相対標準偏差)が16%から5%に、ピーク負音圧の相対標準偏差が10%から4%に低減することを確認した。

1. はじめに

超音波診断法の一つであるパルスエコー法では、中心周波数が $0.5~\mathrm{MHz}-15~\mathrm{MHz}$ 程度のパルス状の広帯域超音波を体内へ照射し、観測される信号の反射強度を画像化することで診断を行う。診断時の安全性を確保するため、超音波の出力に関して生体への安全性評価指標が導入され、指標の上限値で規制が行われている 1 。安全性評価指標の一つである MI (Mechanical Index)は超音波の照射に伴う生体への機械的作用の程度を表し、超音波の瞬時音圧(超音波の伝搬により瞬間的に生じる、静圧からの圧力変動)の負のピーク値に比例する 2 。診断時の超音波の出力は MI の上限値(MI \leq 1.9)によって規制されている。

一方、超音波診断装置を製造するメーカは診断画像の画質向上のために大きな音圧の利用を進めている。これまで、超音波の利用音圧が MI=1.9 に相当する音圧よりも十分小さ

図 1. 診断用超音波向けハイドロホンの一例(メンブレン型(右)及びニードル型(左))

図 2. ハイドロホン感度の周波数特性 (a)感度の振幅特性, (b)感度の位相特性 グラフはメンブレン型(Membr)とニードル型(Needle)のハイドロホンの感 度を 2 種類ずつ示している

かったため、瞬時音圧の計測法に起因する不確かさの改善は特に必要とされてこなかった。しかし、利用音圧の増加に伴い MI=1.9 に相当する音圧との差が縮まったため、計測法に起因する不確かさの影響を無視できなくなってきた。このため、MI が上限値以下であることだけを根拠として、さらに上限に近い大きな音圧を安全に利用することは難しい。診断時の安全性確保と診断装置の性能向上を両立させるため、メーカは上限に近い瞬時音圧をこれまで以上に精密に得るための新たな計測技術を必要としている。そこで、我々は音圧センサであるハイドロホン(図 1)の感度の周波数特性を考慮した瞬時音圧計測法(以降、精密法と呼ぶ)の有効性を検証した。

2. 広帯域超音波瞬時音圧の精密計測に対する課題

現行の瞬時音圧計測法 ³(以降、現行法と呼ぶ)は、狭帯域超音波の利用を想定しているため、広帯域超音波の瞬時音圧の計測結果はハイドロホン感度の周波数特性(図 2)の影響を受ける。

一方、精密法はハイドロホン感度の周波数特性を考慮して瞬時音圧を算出するため、原理的には現行法よりも精密に瞬時音圧を計測できる 4.5。精密法は計測対象となる超音波の周波数帯域に応じたハイドロホン感度の周波数特性が連続的に既知であることを前提としているが、実際には離散的かつ限られた周波数範囲でしかハイドロホン感度を校正できない。このため、そのような周波数範囲をもつハイドロホン感度を精密法に適用するためには、ハイドロホン感度の補間や外挿、瞬時音圧算出時の周波数フィルタなどの信号処理が必要となる。しかし、精密法で求められる信号処理法の要件についてはまだ十分に検討されていない。

図 3. 広帯域超音波の瞬時音圧波形とその正負ピーク付近の拡大図 (a)現行法, (b)精密法

図 4. 各ハイドロホンで計測された瞬時音圧波形のピーク正音圧及びピーク負音圧

3. 広帯域超音波瞬時音圧の計測結果

信号処理法について研究を進めるにあたり、まず我々は精密法の計測原理の有効性を検証した。そのために感度の周波数特性が異なる4つのハイドロホンを用い、現行法と精密法で広帯域超音波(中心周波数 3.5 MHz)の瞬時音圧を計測して得られた音圧波形の正負のピーク値を比較した。

現行法では、ハイドロホン出力電圧の中心周波数における感度の振幅特性で除して瞬時音圧を算出した。一方、精密法では、ハイドロホン感度の周波数特性を校正範囲内(1 MHz – 40 MHz)でスプライン補間した後に周波数軸上で出力電圧スペクトルとハイドロホン感度の周波数特性の除算を行い、40 MHz 以降の周波数成分を矩形フィルタでカットして瞬時音圧を算出した。

図3に、現行法と精密法で得られた瞬時音圧の計測結果を示す。両手法で得られた瞬時音圧波形を比較すると、精密法で得られた各ハイドロホンによる波形は良く一致している。さらに、両手法で算出された瞬時音圧波形のピーク正音圧(瞬時音圧波形の正のピーク値)及びピーク負音圧(瞬時音圧波形の負のピーク値の絶対値)を比較するため、両手法で得られた各ハイドロホンによるピーク正音圧及びピーク負音圧の計測値を図4のとおりプロットした。ピーク正音圧の相対標準偏差(平均値に対する標準偏差の比)は約16%(現行法)から約5%(精密法)、ピーク負音圧の相対標準偏差は約10%(現行法)から約4%(精密法)に低減した。以上の結果から、精密法の計測原理の有効性が確認できた。

4. まとめ・今後の展望

広帯域超音波の瞬時音圧に対する精密法の計測原理の有効性を確認した。今後は、これまで先行研究で未検討であった、ハイドロホン感度の周波数特性への外挿処理が瞬時音圧の計測値に及ぼす影響について調べる予定である。

参考文献

- Guidance for Industry and FDA Staff, Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers, Food and Drug Administration (2008).
- ² IEC 62359 ed. 2.1, Ultrasonics Field characterization Test methods for the determination of thermal and mechanical indices related to medical diagnostic ultrasonic fields, International Electrotechnical Commission (2017).
- ³ IEC 62127-1 ed. 1.1, Ultrasonics Hydrophones Part 1: Measurement and characterization of medial ultrasonic fields up to 40 MHz, International Electrotechnical Commission (2013).
- V. Wilkens and Ch. Koch, "Improvement of hydrophone measurements on diagnostic ultrasound machines using broadband complex-valued calibration data," Journal of Physics: Conference Series, Vol. 1, pp. 50–55 (2004).
- A. Hurrell, "Voltage to pressure conversion: are you getting 'phased' by the problem?" Journal of Physics: Conference Series, Vol. 1, pp. 57–62 (2004).

医用超音波機器の安全性確保に資する 広帯域超音波瞬時音圧の計測原理の有効性検証

〇千葉 裕介, 吉岡 正裕, 堀内 竜三 音響超音波標準研究グループ

1. 研究の背景

- ■超音波による診断: 広帯域超音波が利用 (中心周波数 0.5 MHz-15MHz)
- ・産業ニーズ: 診断時の安全確保と装置の性能向上の両立
 - ▶診断用広帯域超音波の瞬時音圧を, これまで以上に精密に計測できる新たな技術が必要

目的: ハイドロホン感度の周波数特性を考慮した 瞬時音圧計測法(精密法)の計測原理の有効性検証 MI (生体安全性評価指標の一つ)

▶ 瞬時音圧 から算出

2. 広帯域超音波瞬時音圧の精密計測に対する課題

・現行法: 狭帯域超音波を想定

$$p(t) = \frac{u(t)}{|M(f_c)|}$$
 中心周波数の感度の
振幅特性だけ使用

p(t): 瞬時音圧, u(t):ハイドロホン出力電圧, M(f):ハイドロホン感度の周波数特性

・精密法: ハイドロホン感度の周波数特性の影響を考慮

F, F-1: フーリエ変換, 逆フーリエ変換

瞬時音圧算出のための信号処理(感度の補間や外挿, 周波数フィルタ)が必要 ▶信号処理法が瞬時音圧測定値に及ぼす影響の定量評価は十分に検討されていない

3. 広帯域超音波瞬時音圧の計測

- •中心周波数3.5 MHzの広帯域超音波瞬時音圧を計測
- 精密法の信号処理:
- 校正帯域内(1 MHz-40 MHz)でスプライン補間
- 40MHz以降の成分を矩形フィルタでカット
- ・両手法の正負ピーク値のばらつきを比較
 - 正: 約16%(現行法)→約5%(精密法)
 - 負: 約10%(現行法)→約4%(精密法)
- ▶ 精密法の計測原理の有効性を確認

今後: 先行研究で未検討の外挿を含め, 精密法の

信号処理法が瞬時音圧測定値に及ぼす影響を評価していく予定

URL:https://unit.aist.go.jp/rima/

量子ミメティック OCT と波面制御技術の融合 ナノ分光計測研究グループ 白井 智宏

要旨

量子 OCT (光コヒーレンストモグラフィ)を古典的に模倣した量子ミメティック OCT と液晶空間光変調器を利用した波面制御技術を融合すると、測定サンプルが 散乱媒質の背面に置かれた場合であっても、散乱媒質の影響を受けずに高分解能 の断層イメージングが容易に実現できることを実験的に明らかにした。

1. はじめに

光を使って散乱媒質内をイメージングする技術は、生体内の各種疾患を低侵襲で診断する医療機器の原理として重要な役割を果たす。しかし、光は散乱媒質である生体組織内で散乱を繰り返すため、観察する深さと分解能は両立せず、数ミリメートル超える深い領域を細胞が識別できるほど高い分解能でイメージングする技術は未だ確立していない。この問題を解決する方法の一つとして、試薬による組織の透明化が注目を集めている。しかし、この方法は侵襲性が高く生きた状態の生体組織に適用することはできず、さらに透明化するまでに数日程度の時間を要することなどの問題も無視できない。一方、これらの問題を解決するもう一つの方法が、低侵襲かつ短時間で動作可能な波面制御技術に基づく散乱光の補正である。

本研究では、より深くより高精度に光を使ってイメージングする技術の実現に向けて、これまでに提案した量子ミメティック OCT (光コヒーレンストモグラフィ) ¹ と液晶空間光変調器を利用した波面制御技術 ²を融合し、これにより散乱媒質を通した高分解能の断層イメージングが可能であることを実験的に検証する。

2. 量子ミメティック OCT

OCT とは、低コヒーレンス干渉の原理に基づく光を使った断層イメージング法であり、ヒトの網膜の断層像を低侵襲で計測する医療機器の原理としても広く普及している。その深さ分解能は、その原理から光源のスペクトル幅が広くなるほど(つまり、時間的コヒーレンス長が短くなるほど)向上することが知られているが、実際には光学系や測定サンプルに存在する群速度分散の影響により容易に低下してしまう。一方、最近提案された量子OCT は、量子もつれ光子対を利用することにより、群速度分散に不感な性質と分解能の向上特性が得られているため、従来型OCT の性能を凌駕する新しいタイプのOCT として注目を集めてきた。しかし、量子OCT は特殊な量子もつれ光子対を必要とするため、これをそのまま計測現場で利用することは容易ではない。

量子ミメティック OCT とは、量子 OCT から発想を得て、それを古典理論の枠内で解釈し模倣したものであり、量子 OCT に匹敵する優れた特徴をもつことが理論と実験により明らかにされている³。本研究では、その一つとして、通常の広帯域光源を利用し群速度分

散への耐性と深さ分解能の $\sqrt{2}$ 倍向上を実現するスペクトル強度干渉断層イメージング法 (I-SD-OCT: Intensity-interferometric spectral-domain OCT) を採用した 4 。その実用的かつ信頼性の高い実現方法として、光ファイバをベースとした実現光学系を図1に示す 5 。

図 1. 光ファイバをベースとしたスペクトル強度干渉断層イメージング法(I-SD-OCT)の実現光学系. SLD: スーパールミネッセントダイオード, OFC: 光ファイバカプラ, FL: フォーカスレンズ, CL: コリメートレンズ, G: 回折格子.

測定サンプル(Sample)はフォーカスレンズ FL1 の焦点面に置かれ、その反射光と参照 光は光ファイバカプラ OFC2 で合波され、干渉信号がコリメートレンズ CL4 および CL5 から出力される。それらの干渉信号は分光器(Spectrometer)に導かれ、2 つのスペクトル 干渉縞が 1 つの CCD カメラによって同時に取得される。この 2 つのスペクトル干渉縞の 一方を利用すると従来型の OCT 信号が、双方を利用すると I-SD-OCT 信号が評価される。

3. 液晶空間光変調器を利用した波面制御技術

一般に、生体組織をはじめとする散乱媒質に光を入射すると、その光は媒質内部で散乱を繰り返し広がってしまう。しかし、空間光変調器を利用して入射光の波面を適切に制御 (最適化) すると、散乱媒質の内部もしくはそれを透過した後であっても、光を鋭くフォーカスできることが明らかにされてきた 6。その原理は、媒質内で散乱された光波であっても、媒質に吸収がなければ線形性(重ね合わせの原理)が成り立つことに基づいている。

入射光と散乱光(の各要素)を結びつける係数は透過行列(の要素)と呼ばれる。この透過行列が既知であれば、その逆行列を利用して任意の散乱光分布を実現する入射波面を設計することができる。一方、透過行列が未知であっても、線形性に基づく反復演算により、同様に任意の散乱光分布を実現する入射波面を設計することができる。本研究では、後者の反復演算に基づき、散乱光を鋭くフォーカスさせるための入射波面(位相分布)を決定する。これを実現する波面制御光学系を図2に示す。

具体的には、カメラで撮影する"Focusing plane"の中心強度が最大になるように空間光変調器の位相を決定する。その手順として、最初に位相を決定するためのベースとなる直交基底を決め、次に強度の最大値を探索する方法を決める必要がある。本研究では、直交基底としてはウォルシュ関数を、最大値の探索法としては3ステップの位相シフト解析アルゴリズムを採用した。また、空間光変調器として浜松ホトニクス社製の液晶空間光変調器LCOS-SLM(Liquid Crystal On Silicon Spatial Light Modulator)を、散乱媒質としてビーム整

形用の拡散板を、カメラとして高感度な EMCCD カメラを利用した。

図 2. 散乱媒質を透過した光波をフォーカスするための波面制御光学系

4. 両技術の融合による散乱媒質を通した断層イメージング

図1に示す I-SD-OCT 光学系と図2に示す波面制御光学系を融合し、散乱媒質を通して測定サンプルの断層イメージングを行う。これを実現するために、図1に描かれた光ファイバカプラ OFC1の1つのポートをフォーカスレンズ FL1から取り外し、図2のコリメータレンズ Collimator に接続する。前節の手順に従い入射波面の最適化を行うと、Focusing plane 上に鋭いフォーカス点が形成される。その位置に測定サンプルを設置し、I-SD-OCTに基づく断層イメージングを行う。

この融合光学系を利用して、最初に入射波面の最適化を行った。結果の一例を図3に示す。入射波面の最適化を行う前は、拡散板を透過した光波は広がりスペックル状の強度パターンとなるが[図3(左)]、最適化を行うと高輝度なフォーカス点が形成されることを確認した[図3(中)]。フォーカス点の強度は、最適化前の平均強度の約30倍であった。

図 3. Focusing plane 上に形成される (左) 最適化前と (中) 最適化後の強度パターン, および (右) LCOS-SLM に表示される最適化された位相パターン.

本研究では測定サンプルとして単純な平面ミラーを利用し、それをフォーカス点が形成される Focusing plane 上に設置した。入射波面の最適化を行わない場合(つまり、LCOS-SLM が反射ミラーとして機能する場合)、測定サンプルは図 3 (左)に示す散乱パターンによって照明されるため、反射光はうまく I-SD-OCT 光学系に戻らず、測定サンプルの情報をもったスペクトルは出力されない[図 4(左)参照]。その結果、従来型 OCT 信号および I-SD-OCT 信号の双方から、測定サンプルの情報を得ることは全くできなかった[図 4 (中)および(右)参照]。

図 4. 入射波面の最適化を行わない場合の(左)スペクトル,(中)従来型 OCT 信号, および(右) I-SD-OCT 信号.

入射波面の最適化を行うと、図 5(左)に示すようにスペクトル干渉縞が観測され、それを利用して測定サンプルの情報を持った従来型 OCT 信号[図 5(中)]および I-SD-OCT 信号[図 5(右)]が取得される。測定サンプルとしてミラーを利用したため、各信号のピーク位置は測定サンプルの位置を、信号幅は奥行き分解能を表している。図 5 より、従来型 OCT は分散の影響により分解能は低下しているが、I-SD-OCT は分散の影響を受けずに高い分解能が保持されていることがわかる。

図 5. 入射波面を最適化した場合の(左)スペクトル,(中)従来型 OCT 信号, および (右) I-SD-OCT 信号.

図 6 は測定サンプルを拡散板の方向に約 100 μm シフトさせた場合の結果である。測定サンプルのシフトに従って、従来型 OCT 信号および I-SD-OCT 信号がグラフの原点側にシフトする様子が確認される。この結果は、これらの信号が散乱媒質の背面に置かれた測定サンプルからの情報を正しく反映していることを示す重要な証拠といえる。

図 6. 入射波面を最適化した上で、測定サンプルを拡散板の方向に約 $100 \, \mu m$ シフトさせた場合の(左)スペクトル、(中)従来型 OCT 信号、および(右)I-SD-OCT 信号.

5. まとめ

本研究では、量子ミメティック OCT の群速度分散に不感な性質と高分解能特性を活かし、これを液晶空間光変調器を利用した波面制御技術と融合することで、散乱媒質を通した場合であっても高分解能の断層イメージング可能となることを実験的に明らかにした。

従来型 OCT であっても、波面制御技術との融合により散乱媒質を通した断層イメージングは可能であるが、光学系(散乱媒質)に存在する群速度分散の影響により、その分解能は著しく低下してしまう。もちろん分解能の向上を目指すための分散補正は原理的には可能であるが、散乱媒質内での光波の挙動は複雑であるため、それに伴う分散の影響を完全に補正することは容易ではない。そのため、散乱媒質を通した断層イメージングにおいては、従来型 OCT ではなく、量子ミメティック OCT と波面制御技術の融合が有望な選択肢となる。

本稿では、散乱媒質を透過しても高分解能で断層イメージングが可能となる技術を紹介 したが、これはより深くより高精度に光を使ってイメージングする技術の基礎として重要 な役割を果たす。

謝辞

本研究は、東フィンランド大の Friberg 教授と共同で推進し、JSPS 科研費 JP16K04990 の助成を受けた。

- ¹ 白井智宏, フリバーグ アリ, 分析計測標準研究部門第 4 回シンポジウム報告集, 53-64 (2018).
- 2 白井智宏, 分析計測標準研究部門第2回シンポジウム報告集, 149-153 (2016).
- ³ T. Shirai, "Modern Aspects of Intensity Interferometry with Classical Light," in T. D. Visser, ed., *Progress in Optics* **62**, 1-72 (Elsevier, 2017).
- ⁴ T. Shirai and A. T. Friberg, J. Opt. Soc. Am. A **31**, 258 (2014).
- ⁵ T. Shirai and A. T. Friberg, J. Opt. **20**, 045610 (2018).
- ⁶ A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nature Photonics **6**, 283 (2012).

量子ミメティックOCTと波面制御技術の融合

○白井 智宏 ナノ分光計測研究グループ

1. 研究の背景

- ○散乱媒質内を光でイメージングする 技術は、生体内部を低侵襲で診断す る医療機器の原理として重要。
- 〇しかし、光は生体組織(散乱媒質)内 で散乱を繰り返すため、観察する深 さと分解能は両立しない。

2. 研究の内容

- ○量子ミメティックOCT(QM-OCT)を開発し、耐分散性と分解能の向上を通常の光源を使って実現。
- 〇 波面制御技術を開発し、散乱媒質を 通した光波の集光を実現。
- ○両者を融合し、散乱媒質を通しても 高分解能の断層イメージングが可能 であることを実験的に検証。

3. 検証実験の結果

- 〇波面制御を利用することで、散乱媒質を通しても断層信号(従来型OCT信号)を取得できた。
- QM-OCT信号に基づき、高分解能の 断層像を再現できた。

4. 結論および今後の展開

- ○提案技術の有効性を確認。
- ○実用化に向けて、複雑なサンプルで の検証実験および波面制御技術の 改良(高速化、他)を実施。

【謝辞】本研究は、東フィンランド大のFriberg教授と共同で 推進し、JSPS科研費JP16K04990の助成を受けた。

図1:量子ミメティックOCTの実現光学系

図2:波面制御光学系

《波面制御なし》

《波面制御あり》

《波面制御あり:ミラーを100µm内側に移動》

図3:サンプルとしてミラーを使った 検証実験の結果

URL:https://unit.aist.go.jp/rima

ラドンモニタ校正システムの試運転の結果について 放射能中性子標準研究グループ 古川 理央

要旨

大気中に存在する自然放射性核種のラドン (222Rn) は肺がんの原因の1つと考えられ、測定ニーズが高まっている。放射能中性子標準研究グループではラドン放射能濃度の標準開発に取り組んでいる。ラドン濃度を絶対測定する標準器、通気式電離箱、ラドンモニタを格納するチャンバーを主な構成要素とし、ラドンモニタを校正するためのシステムを整備した。本報告では、システムの詳細と、システムの試運転としてラドンを含まないコールドガスの測定を行ったのでその結果について述べる。

1. はじめに

ラドン(222 Rn)は自然由来の放射性ガスであり、半減期約 3.8 日の α 崩壊核種である。親核種であるラジウム(226 Ra)が岩石や土壌に含まれるため、それらを発生源とし大気中に普遍的に存在する。子孫核種には 218 Po、 214 Pb、 214 Bi、 210 Pb、 210 Bi、及び 210 Po がある。子孫核種は安定な 206 Pb に至るまで全て放射性である。ラドンとその子孫核種は呼吸により吸入され、特に短半減期子孫核種(218 Po(半減期約 3 分)、 214 Po(半減期約 164 μ s))が肺に沈着し、 α 線被ばくを起こす。肺への α 線被ばくが肺がんの原因になると考えられており、ラドン濃度 Bq μ 3 に規制を導入する動きがあり、ラドン濃度を測定するニーズが高まっている。ラドン濃度測定の信頼性確保のために測定器の校正は不可欠であり、規制が導入されている欧州などを中心に、諸外国の計量標準機関においてラドン濃度の国家標準による標準供給が行われている。一方、日本では国家標準による標準供給の実績が無く、国家標準の立ち上げが要望されてきた。このような背景を受け、放射能中性子標準研究グループでは、ラドン濃度の国家標準の開発に取り組んでいる。

2. ラドンモニタ校正システム

ラドン濃度の標準供給を行う計量研では、一次標準としてラドン濃度の絶対測定を行い、 濃度の定まったラドンを容器に捕集しラドンの標準ガスを作製し、この標準ガスを利用し 標準供給を行っている場合がある。この方法は捕集する際にラドンの飛散の可能性がある 点、標準ガスの測定から校正に利用するまでに時間がかかり、ラドンの減衰の影響が無視 できない点、絶対測定で濃度の定まったラドンを全て容器に捕集する必要がある点で、作 業に困難さを伴う。さらに日本では線源の輸送に関して煩雑な手続きが必要になるデメリ ットがある。

今回整備した校正システムでは、一次標準から校正対象となるラドンモニタを格納する チャンバーまでガス配管でつなぎ、ラドンを容器に捕集することなく校正が可能なガス循環システムを構築した。写真を図1に示す。 ラドンモニタの校正に使用するガス循環系には、一次標準器となる多電極比例計数管 (Multi-electrode proportional counter: MEPC) ¹、通気式電離箱、校正対象のラドンモニタを 格納するラドンモニタ用チャンバーの他に、ガスの温度や圧力などをモニターする計器類を設置する。MEPC で測定する際にはキャリアガス兼電離媒体として Ar 90%、CH4 10%の P10 ガスを使用する。校正対象となる市販のラドンモニタは空気中のラドン濃度を測定するため、空気と P10 ガスの両方で稼働する通気式電離箱を仲介器として使用する。通気式電離箱は あらかじめ同一のラドン濃度での P10 ガスと空気の応答の違いを明らかにしておく。校正の流れは以下の通りである(図 2)。

- 1. P10 ガスを担体とし、MEPC により電離箱を校正する (P10 ガスを流すループ)。
- 2. 空気を担体とし、電離箱でラドンの濃度を測定する(空気を流すループ)。
- 3. 濃度のわかったラドンでラドンモニタを校正する。

電離箱を P10 ガスを流すループで使用した後空気を流すループで使用する事を考慮し、配管の付け替え無くバルブ操作だけで 2 つのループを切り替えられるようになっている。

3. コールド試験

MEPC はラドンとその子孫核種から放出される α 線のエネルギースペクトルを取得し、ラドン濃度の絶対測定を可能にする工夫が施された比例計数管である。通常の比例計数管では、フランジ近傍で電場が歪み、その部分で生成された電離電子は十分にガス増殖されず、中心付近で得られる信号よりも小さな信号として検出される。フランジ近傍の電場の歪みを補正し、電離電子のガス増殖を計数管内の位置によらず一様にするため、MEPC では両端のフランジ部分には中心から $0.5\,\mathrm{cm}$ 毎に $6\,\mathrm{am}$ 本の同心円状の電極(リング電極)を設置した。それぞれのリング電極には中心からの距離に依存した電圧を印加する。MEPC からは陽極線(径 $50\,\mathrm{\mu m}$ 、タングステン線)の印加電圧が $1000\,\mathrm{V}$ 以上でラドンの有無にかかわらず高頻度で信号が検出される事があった。MEPC に $P10\,\mathrm{dm}$ ガスのみを流しバックグラウンドのスペクトルを取得すると、スペクトルの低チャンネル部分に計数の上昇が見られた(図 $P10\,\mathrm{dm}$ 3)。そこで修理のため MEPC を分解すると、計数管内に最大で全長 $P10\,\mathrm{dm}$ のほこりのような物や、全長 $P10\,\mathrm{dm}$ の何らかの赤い破片などが $P10\,\mathrm{dm}$ のほこりのような物や、全長 $P10\,\mathrm{dm}$ の何らかの赤い破片などが $P10\,\mathrm{dm}$ のほこりのような物や、全長 $P10\,\mathrm{dm}$ の行らかの赤い破片などが $P10\,\mathrm{dm}$ のほこりのような物や、全長 $P10\,\mathrm{dm}$ の行らかの赤い破片などが $P10\,\mathrm{dm}$ のほこりのような物や、全長 $P10\,\mathrm{dm}$ の行らかの赤い破片などが $P10\,\mathrm{dm}$ の行らかの赤いなどが $P10\,\mathrm{dm}$ の行らかの赤いて全板 $P10\,\mathrm{dm}$ の行らかで全板 $P10\,\mathrm{dm}$ の行らかの赤いて全板 $P10\,\mathrm{dm}$ の行らかのからのよりをなる $P10\,\mathrm{dm}$ の行らかのからのよりなど $P10\,\mathrm{dm}$ の行らなのからのよりなど $P10\,\mathrm{dm}$ の行らな $P10\,\mathrm{dm}$ の行らな $P10\,\mathrm{dm}$ の行らな $P10\,\mathrm{dm}$ の行らなのからのよりな $P10\,\mathrm{dm}$ の行らなのからのからのよりな $P10\,\mathrm{dm}$ の行らな $P10\,\mathrm{dm}$ の行の $P100\,\mathrm{dm}$ の行らな $P100\,\mathrm{dm}$ の行らな P1

通気式電離箱(大倉電気株式会社製、型式 I-409601)は容積 $1.5\,L$ の円筒形である。下部の専用コネクタにより振動容量電位計(大倉電気株式会社製、型式 RD1230A)と接続し、振動容量電位計で電流値を読み取り、ラドン濃度に換算する。通気式電離箱に P10 ガス・実験室内の空気を封入しバックグラウンドの電流値を測定した。P10 ガスの場合も空気の場合も、電流値は $10^{-15}\,A$ のレベルであった。ここで、校正範囲 $5\times10^3\sim3\times10^6\,Bq$ m $^{-3}$ に対応する電流値は、メーカーが提示するラドン濃度と電流値の空気における換算係数から計算して $10^{-13}\sim10^{-10}\,A$ のレベルとなる。今回の電流値はラドン測定で想定される電流値より十分小さい事が確認できた。

校正対象となるラドンモニタを格納するラドンモニタ用チャンバーは容積約 85 L のアクリル製チャンバーである。市販のラドンモニタの中で、研究機関で使用例の多い測定器

の AlphaGUARD™ (brtin 社製) を格納することを想定し、形状や大きさを決定した。

4. まとめと今後の方針

ラドンモニタを校正するシステムにおいて、P10 ガスと空気のみを使用し、MEPC と通気式電離箱のバックグラウンド測定を行った。特に懸案であった MEPC のバックグラウンド測定での計数を大きく減少させることができ、標準の立ち上げに向け前進した。今後はこのラドンモニタ校正システムをラドン発生源を所有する国立研究開発法人 量子科学技術研究開発機構 放射線医学総合研究所のラドン実験棟に設置し、ラドンを使用し各装置の動作確認を行う。校正の手順に習熟し、各装置の測定能力を評価する。

図1. ラドンモニタ校正システムの写真

図2. ラドンモニタ校正システムの概要

図 3. 清掃前の MEPC のバックグラウンドスペクトル 陽極線に 1300 V 印加、測定時間 100 s

図 4. 清掃後の MEPC のバックグラウンドスペクト 陽極線に 1300 V 印加、測定時間 100 s

¹古川ら, JASIS2018 コンファレンス. 分析計測標準研究部門第 4 回シンポジウム(2018)

ラドンモニタ校正システムの試運転の 結果について

〇古川 理央 放射能中性子標準研究グループ

1. 開発の背景

大気中に存在する自然放射性核種のラドン(222Rn)とその短半減期子孫核 種(218 Po、 214 Po)の α 線による内部被ばくは肺がんの原因の一つと考えられて いる。ラドン濃度測定のニーズの高まりを受け、産総研はラドン放射能濃度の 国家標準を立ち上げる。ラドンモニタ校正のためのシステムを整備し各構成装 置の試験運転を行ったので、その結果について述べる。

2. 校正システム

標準器は多電極比例計数管(MEPC)である。 P10 ガスを担体とし、MEPC により電離箱を校 正する(黄色のループ)。

空気を担体とし、電離箱でラドンの濃度を測定 する(青のループ)。

値付けされたラドンでラドンモニタを校正する。

P10ガスを MEPC 電離

3. 試運転の結果

P10ガスのみを使用し校正システムの動作確認を行った。図1 校正システムの概要 ①校正用チャンバー

校正対象のラドンモニタを格納するチャンバーとしてアクリル製のチャン バーを作製した。体積は約85 Lである。本校正システムにおける測定では 影響のないレベルのリーク(約 0.2 %/h)であることを確認した。

②MEPCの動作の改善

MEPCは半径3.5 cm、長さ32 cmの円筒形状の比例計数管である。陽極線をはタングステン ワイヤー(φ50 μm)である。BG測定の結果、スペクトルの低チャンネル部分に有意な計数の 上昇が見られた。修理のため分解し、計数管内に混入していたほこりのような物や、何らか の破片などを取り除くと有意な計数はみられなくなり、安定的に作動するようになった。

図4 MEPC内清掃前のBGスペクトル MEPCにP10ガスのみ入れ(締め切り)、測定時間100 s

図5 MEPC内清掃後のBGスペクトル MEPCにP10ガスのみ入れ(流量0.002 L/min)、 測定時間100 s

4. 結論および今後の展開

ガス校正システムの動作確認を行い、校正用チャンバーの気密性を確認し、MEPC の動作を改善する事ができた。引き続き通気式電離箱や他装置の評価を行う。

環境モニタリング線量計の現地校正手法の開発 放射線標準研究グループ 黒澤 忠弘、加藤 昌弘、石井 隼也

要旨

本研究では、既存の校正手法では不得意な高バックグラウンド線量下においても 精度よく校正を行うため、散乱線を低減させるためのコリメータ及び簡易遮へい を組み合わせた現地校正手法を確立し、高バックグラウンド線量下に設置してい る連続モニタ測定値の品質を適切に維持するための手法を構築することを目的と する。

1. はじめに

現在、我が国では原子力施設を中心に環境の放射線量を連続的に測定するためのモニタリングポストに代表される放射線計測機器(以下「連続モニタ」という。)が多数設置・運用されている。連続モニタは、検出器及び演算処理部が建屋等に強固に固定されていることが多く、装置を取り外して校正施設等で校正することが困難である。また、連続測定が義務づけられている場合もあることから、欠測期間を最小限にできる現地校正が行われている。しかしながら、東京電力福島第一原子力発電所事故以降、福島県内を中心に多くの連続モニタが配置されているが、一部の地域では、校正に用いる照射線量に対して無視できないレベルのバックグラウンド線量が存在し、現地校正を容易に行うことができない状況にある。このため高バックグラウンド線量下における現地校正技術の開発が喫緊の課題となっている。

本研究では、既存の校正手法では不得意な高バックグラウンド線量下においても精度よく校正を行うため、散乱線を低減させるためのコリメータ及び簡易遮へいを組み合わせた現地校正手法を確立し、高バックグラウンド線量下に設置している連続モニタ測定値の品質を適切に維持するための手法を構築することを目的とする。

2. 校正装置の概要

高バックグラウンド地域に多く設置されているモニタリングポストは、可搬型モニタリングポストを固定して使用されている。これらのモニタリングポストを製作している主要なメーカーに問い合わせしたところ、顧客からの特段の要請がない限り、上方からの照射による校正を行っていると回答を得た。そこで本研究でも、上方から照射する方法で校正が行える装置の開発を行った。

図1に、設計した照射装置及び遮へい体の設計図を示す。コリメータは、なるべく検出 器周りに近い位置に配置できるように設計している。鉛のリングを重ねる形となっており、 リングの厚さは20 mm である。リングの重量は1個約2kgとなっており、リングを5個 重ねて使用する。線源部分は、下方向に照射できるよう、リメータ付きの照射装置となっ ている。また線源周りも周囲からの散乱線低減のため線源部分を遮へいしている。コリメ ータ部分の重量は、約 10 kg である。このコリメータ部分は、レーザー距離計と入れ替えることが可能となっており、これにより線源からモニタリングポストまでの距離を精度よく計測することが可能となっている。

図 1. 下方向照射装置及びモニタリングポスト遮へい体の設計図

現地校正において、線源と検出器の距離合わせが最も時間を要する作業となる。そこで本研究では、実験室内において複数の線源間距離における線量率を実測により求め、この値を内挿することにより、任意の距離における線量率を求められる方法を採用した。これにより、セットアップの時間を大幅に短縮することが可能となった。

3. 従来手法との比較

日本分析センターでは、基準電離箱を現地に持ち込み、比較測定を行うことによりモニタリングポストの現地校正を行っている。そこでこの従来の手法と、今回開発した手法との比較を行った。

屋外(受託事業者敷地内)に受託者が所有する被校正器を設置し、検出器の中心位置から $1.5 \, \mathrm{m}$ の距離で $137 \, \mathrm{Cs}$ の γ 線源を約 $1 \, \mu \mathrm{Gy/h}$ の線量率で照射し、 $1 \, \mathrm{分間隔}$ で $10 \, \mathrm{回}$ 回の繰り返し測定を行った。 γ 線源を撤去し、バックグラウンドの測定を γ 線源と同様の時間及び回数で行った。 $10 \, \mathrm{回}$ の測定値から平均値を求め、 γ 線源の平均値からバックグラウンドの平均値を差し引き正味の値を求めて被校正器の値とした。被校正器の仕様を表 $1 \, \mathrm{に示す}$ 。

品名	可搬型モニタリングポスト
メーカー	富士電機株式会社
型式	NAJ51001-01 型
1 \(\)	2 inchφ×2 inch NaI(Tl)検出器
検出器	ワイドレンジタイプ
測定線量率範囲	10 nGy/h~100 mGy/h

表 1. 被校正器の仕様

表2に日本分析センターによる現地校正の校正結果を示す。

核種	γ線エネルギー	校正距離	線量率	校正定数	不確かさ*
	(keV)	(m)	(μGy/h)	仪正足剱	(%)
¹³⁷ Cs	660	1.5	0.84	1.03	6.7

表 2. 現地校正手法による校正の結果

*校正の不確かさは、拡張不確かさ(k=2)を表す。

拡張不確かさは、ISO 国際文書"Guide to the expression of Uncertainty in Measurement (1995)" (「計測における不確かさの表現ガイド」)に基づき、合成標準不確かさと包含係数 k=2 とから決定されたもので、約 95 %の信頼の水準を持つと推定される区間を定めたものである。

産総研開発手法による校正の結果を表 3 に示す。なお、日本分析センターの校正条件と合わせるために、モニタリングポストの検出器周りの遮へい体はない状態で校正を行っている。

表 3. 産総研開発手法による校正の結果

核種	γ線エネルギー (keV)	校正距離 (m)	線量率 (µGy/h)	校正定数
¹³⁷ Cs	660	0.4	3.5	1.01

日本分析センターの現地校正手法による校正定数は 1.03、同じ被校正器に対して校正を行った産総研開発手法による校正定数は 1.01 であった。日本分析センターの現地校正手法による校正定数を基準にして産総研開発手法による校正定数を比較した結果は、0.98 (-2 %) であり±3 %以内で一致した結果であった。

また本手法によるモニタリングポストの検出器周りの遮へい体の有無による校正結果の影響についても検証を行った。結果を表 18 に示す。

表 4. 遮へい体ありなしでの校正定数

校正手法	本研究での校正結果	本研究での校正結果	
	(遮へい体なし)	(遮へい体あり)	
校正定数	1.01	1.03	
(空気吸収線量)			

2%程度の違いが見られたが、本校正手法の相対標準不確かさはおよそ3%程度あると考えられることから、不確かさの範囲内で一致していることが確認できた。

4. まとめ

高バックグラウンド線量下において現地校正できるよう、下方向に向けたコリメート照射装置を開発した。本手法と基準電離箱による現地校正手法との比較を行い、その妥当性を確認した。本研究で開発された校正手法は、基準電離箱といった電気的な機器を屋外で使用する必要がないことから、ウォーミングアップ等の時間が不要となっている。また位置合わせも、線源からモニタリングポストの距離を正確に合わせる必要がなく任意の距離で校正が行えるため、セットアップの作業が容易のとなり大幅な時間短縮となっている。また現地に設置されているモニタリングポスト周辺には、通信機器や電源供給のためのソーラーパネル、蓄電池などが配置されているが、コリメート照射による校正のため、周辺機器からの散乱線の影響を非常に小さくすることが可能となった。線量率が付与された線源を用いる従来手法では、周辺機器の配置により散乱線による影響を評価することが非常に困難であるが、本手法では容易に不確かさ評価を行うことが可能である。

Research Institute for Measurement and Analytical Instrumentation

環境モニタリング線量計の現地校正手法の開発

○黒澤 忠弘、加藤 昌弘、石井 隼也 放射線標準研究 グループ

1. 開発の背景

- ・原子力施設を中心に環境の放射線量を連続的に測定するためのモニタリングポストが多数設置。またこれらは強固に固定されており、取り外しが非常に困難。
- ・また福島県内の一部地域では、バックグラウンド線量が高く、現行の現地校正手法では対応が難しい
- ⇒バックグラウンドを低減させ、かつ簡便に行える現地校正手法を開発!

2. 校正装置の概要

- ・大きく二つの部分で校正
- (1)モニタリングポスト遮へい部

環境のバックグラウンド線量を低減させるために、モニタリングポストの検出部を鉛20 mmで遮へい

- ⇒これによりCs-137の線量を50 %~70 %低減
- (2)照射装置部

周辺機器(ソーラーパネルや表示部、蓄電池)からの散乱線を低減させるために、コリメート照射となっている。

レーザーによる距離計測により、任意の距離での 校正が可能⇒ セットアップ時間を大幅に低減!

3. 現行手法との比較

- ・日本分析センターにて行われている基準電離箱を 用いた校正と比較を行った
- ⇒ 2%以内で一致
- ⇒ 従来手法では5時間程度だったのが、本手法では1時間で校正が可能!

4. 結論および今後の展開

- ・今後は実際のモニタリングポストに対する校正試 験を実施し、その妥当性を確認
- ・国際規格(ISO)への提言を予定

図1 開発した校正装置の概略図

図2 従来手法(下)と本研究で開 発した手法(上)による校正風景

URL:https://unit.aist.go.jp/rin

外部放射線治療用水吸収線量の現地校正技術の開発

放射線標準研究グループ 清水 森人、佐藤 優樹¹、平山 憲¹ 齋藤 拓也¹、森下 雄一郎 駒澤大学¹

要旨

最新の放射線治療装置を導入している放射線治療施設に対して、いち早く水吸収線量標準を供給していくようにするため、コンパクトグラファイトカロリーメータを最新の放射線治療装置を設置している施設に持ち込んで、ユーザーの電離箱線量計を現地校正する技術を開発した。開発した現地校正技術が妥当であることを確認するため、名古屋大学医学部附属病院の施設に開発したカロリーメータを持ち込んで、サイバーナイフ装置からのFFF高エネルギー光子線を実際に計測し、電離箱線量計の校正を行った。校正結果から得られる線質変換係数を現行の線量計測プロトコルに記載されている線質変換係数の計算値と比較し、一致することを確認した。

1. はじめに

放射線治療ではがん組織への投与線量の多寡によってがんの再発率や正常組織の有害事象の発生率に影響を与えるため、合理的に可能な範囲で正確に投与線量を管理する必要がある¹。このため、放射線治療施設では治療の前後に電離箱線量計を用いて、治療装置から出る放射線の水吸収線量計測を行い、投与線量の基準としている。AAPM Report 85 では、将来的にこの水吸収線量計測の不確かさを相対標準不確かさ 1 %以下に抑えることが目標とされている²。

我が国で最も普及している医療用リニアック装置からの高エネルギー光子線の水吸収線量については、2013年に高エネルギー光子線の水吸収線量標準の供給が開始されており、標準供給を受けた放射線治療施設では相対標準不確かさ1%以下での水吸収線量計測が実現している。しかし、最新の放射線治療装置に搭載されているFFF (Flattening Filter Free)高エネルギー光子線など、新しい放射線に対する水吸収線量標準の対応が課題となっていた。従来の線量標準確立の流れは、放射線源(放射線治療装置)を取得したのち、線量の絶対計測技術を開発するというものであったが、大規模な設置スペースと厳重な遮蔽を必要とする放射線治療装置では、線源の取得だけで数年の期間を必要としてしまうため、標準の確立までに5年以上の期間を必要としていた。これに対し、放射線治療装置は同程度のサイクルで新しい種類の放射線治療装置が発売され、装置が更新されていくため、従来の手法では、放射線治療施設のニーズに十分に応えることができない。

この問題を解決する手段として、最新の放射線治療装置を導入した施設を訪問して現地校正を行う方法がある。この方法であれば、装置導入にかかる時間が短縮されるため、標準確立に要する期間を2年以内に短縮できる。そこで本研究では、水吸収線量の絶対計測に用いられるグラファイトカロリーメータを一般の放射線治療施設においても使用できるようにしたコンパクトグラファイトカロリーメータを新たに開発し、これを最新の放射

線治療装置を導入した施設に持ち込んで現地校正を行う技術を開発した。

2. 研究方法

2. 1 グラファイトカロリーメータ コンパクトグラファイトカロリーメータ は Co ガンマ線および高エネルギー光子 線の水吸収線量標準に用いられているグ ラファイトカロリーメータのグラファイ ト素子部分のみをアクリルの真空ケース に格納したものである。図 1 にグラファ イト素子の概略図を示す。グラファイト

図1. グラファイト素子の概略図

素子は中心に熱量吸収体である「コア」があり、その外側にコアを断熱するための「ジャケット」、さらにその外側に外部から熱の流入を防ぐための「シールド」の3 重構造となっている。各グラファイト素子には温度センサーとしてのサーミスタとヒーターとしてのサーミスタがそれぞれ取り付けており、PID 制御によって温度を調整可能になっている。放射化学反応による熱欠損を防ぐため、グラファイトカロリーメータ内は10⁻¹ Pa以下に真空排気して測定に用いられる。

このコンパクトグラファイトカロリーメータを名古屋大学医学部附属病院に設置されたサイバーナイフ装置に持ち込み、FFF 高エネルギー光子線の水吸収線量の絶対計測を行った。恒温循環水槽を用いて水温を 26 度で一定に制御した水ファントム中にコンパクトグラファイトカロリーメータ水没させ、高エネルギー光子線の水吸収線量計測の基準条件である、線源一検出器間距離 $100\,\mathrm{cm}$ 、水深さ $10\,\mathrm{g\,cm^2}$ の位置に設置した。次に、シールドが水温よりもやや高い温度で一定となるようにシールドの温度を制御し、ジャケットをコアの温度と同じになるように制御することで、コアとジャケットの間に熱平衡状態を作り、コアを準断熱状態においた。この準断熱状態を保った状態でサイバーナイフ装置から FFF 高エネルギー光子線をコンパクトグラファイトカロリーメータに照射し、コアの温度上昇からコアのグラファイト吸収線量 D_c [Gy]を次の式で決定した。

$$D_{\rm c} = \frac{C\Delta T}{M} k_{\rm rn} k_{\rm def} \tag{1}$$

ここで、C [J K^{-1}]および M [kg]はそれぞれコアの比熱容量と質量を示す。比熱容量はコアに取り付けたヒーターから一定のジュール熱を加え、その際の温度上昇から決定した。コアの質量は校正済の電子天秤を用いて決定した。 k_{rn} は動径方向の線量分布に対する補正を示し、3D ファントムで計測された動径方向の線量分布から、コアの有感領域の平均線量に対するビーム軸上の基準点での線量の比から決定した。 k_{def} は熱欠損補正を示し、グラファイトが放射線から吸収したエネルギーのうち、放射化学反応で消費された分を補正する値であるがこれについては真空中では相対標準不確かさ 0.1 %で 1 とすることができる 3 。

2. 2 水吸収線量への変換

コンパクトグラファイトカロリーメータで計測された吸収線量はコアのグラファイト 吸収線量であるため、最終的に求める水吸収線量へと変換する必要がある。従来の線量標準では、計測対象の放射線毎にモンテカルロシミュレーションを行い、次のように変換係数を導出して変換を行ってきた。

$$C_{\text{w,c}} = \left(\frac{D_{\text{w}}}{D_{\text{c}}}\right)_{\text{MC}} \tag{2}$$

ここで、 D_w [Gy]は水吸収線量を示す。この手法は、線源の変更がない場合は極めて正確であるが、施設毎に線質が異なることが予想される現地校正においてこの方法は現実的ではない。この変換係数の導出手順を単純化するため、本研究では FFF 高エネルギー光子線における変換係数を複数の線質についてあらかじめモンテカルロシミュレーションで計算することで線質指標 $TPR_{20,10}$ に対する $C_{w,c}$ の二次回帰曲線を決定し、この曲線から実際の計測対象の線質に応じた変換係数を導出することとした。

2. 3 測定結果の評価

測定結果を比較するため、グラファイトカロリーメータで計測した水吸収線量の値を基準に電離箱線量計の校正を行い、その結果から次の式で線質変換係数 k_0 を導出した。

$$k_Q = \frac{N_{\text{W},Q}}{N_{\text{W},Q_0}} \tag{3}$$

ここで、 $N_{w,Q}$ はコンパクトグラファイトカロリーメータを標準器として校正することで得られたサイバーナイフ装置からの FFF 高エネルギー光子線に対する電離箱線量計の水吸収線量校正定数、 N_{w,Q_0} は産総研の Co ガンマ線水吸収線量標準によって校正することで得られた電離箱線量計の Co ガンマ線水吸収線量校正定数である。

3. 結果

図 2 にサイバーナイフ装置からの FFF高エネルギー光子線をコンパクト グラファイトカロリーメータで測定 した際のコアの温度上昇のグラフを 示す。図から分かるように、ビーム照 射に応じて、17 mK 程度の温度上昇が 生じていることが分かる。この測定で の温度上昇測定の変動係数は 0.2 % で、高エネルギー光子線の水吸収線量 標準に用いられているグラファイト カロリーメータと同程度の精度で温 度上昇およびグラファイト吸収線量 を測定できることが確認できた。

図 2. サイバーナイフ装置からの FFF 高エネルギー光子線を照射した際のコアの温度変化。上図が光子線のオン・オフを示し、下図がコアの温度変化を示す。

図 3 にコアのグラファイト吸収線 量を水吸収線量に変換する変換係数 の計算結果を示す。図中の■は二次回 帰曲線を得るために計算を行った線 質毎の変換係数の計算値を示し、実線 は■の値からえられた二次回帰曲線 である。 ○は IAEA の Phase Space Database に登録されているサイバー ナイフ装置のビームデータ⁴を元に従 来の方法式(2)で計算された変換係 数の値である。この計算に用いたビー ムデータの線質指標TPR_{20.10}は 0.63 であり、従来の方法で得られた変換係 数と二次回帰曲線から推定される変 換係数の値が、モンテカルロシミュレ ーションの相対標準不確かさ 0.3%の 範囲内で非常によく一致しているこ とが分かる。この結果をもとに、コン パクトグラファイトカロリーメータ

図 3. 変換係数の計算結果。■が線質毎に求めた変換係数の計算結果で、実線がその二次回帰曲線を示す。○が IAEA の Phase Data Base で配布されているサイバーナイフ装置からの FFF 高エネルギー光子線のビームデータから計算した変換係数。

の測定に用いた名古屋大学医学部附属病院の線質指標TPR_{20,10}は 0.64 であったことから、名古屋大学医学部附属病院の線質指標は 1.1145±0.0030 と決定して水吸収線量を求めた。最後に得られた水吸収線量から、ファーマ型電離箱線量計 Exradin A19 の水吸収線量校正を行い、線質変換係数を決定した。表 1 に得られた線質変換係数の値と現在の我が国の線量計測プロトコルである標準計測法 12⁵ に記載されている線質変換係数の計算値、IAEAが刊行している線量計測プロトコル 6 に記載されている線質変換係数の計算値との比較を示す。図からわかるように、本研究で得られた線質変換係数はいずれの線質変換係数とも不確かさの範囲内で一致していることが分かった。

	Present	JSMP 12 ⁵	TRS-483 ^{**6}		
Exradin A19	0.9879 (65)	0.996 (10)	0.990 (10)		

表 1. 線質変換係数の比較

() 内の数値は下2桁の標準不確かさを示す。

※TRS-483の線質変換係数は動径分布補正を含んでいないため、動径分布補正を行った。

4. まとめ

コンパクトグラファイトカロリーメータを用いた現地校正技術を開発し、名古屋大学医学部附属病院のサイバーナイフ装置を用いて試験測定を行った。得られた測定結果は、不確かさの範囲内で線量計測プロトコルに記載されている線質変換係数の値とよく一致した。本研究の手法は、最新の放射線治療装置に速やかに対応していくことが可能であり、今後、現地校正サービスとしての標準供給開始を目指して準備を進めていく。

参考文献

- ¹ INTERNATIONAL ATOMIC ENERGY AGENCY, Accuracy Requirements and Uncertainties in Radiotherapy, Human Health Series No. 31, IAEA, Vienna, 2016.
- ² AAPM TG65, TISSUE INHOMOGENEITY CORRECTIONS FOR MEGAVOLTAGE PHOTON BEAMS, AAPM Report No. 85, AAPM, Wisconsin, 2004.
- ³ ICRU, KEY DATA FOR IONIZING-RADIATION DOSIMETRY: MEASUREMENT STANDARDS AND APPLICATIONS, ICRU Report 90, Journal of the ICRU Vol 14 No 1 (2014) Report 90.
- ⁴ P. Francescon, S. Cora and C. Cavedon, Med. Phys. 35, 504, 2008.
- ⁵ 日本医学物理学会編,外部放射線治療のため水吸収線量の標準計測法(標準計測法12), 通商産業社,2012年.
- ⁶ IAEA, DOSIMETRY OF SMALL STATIC FIELDS USED IN EXTERNAL BEAM RADIOTHERAPY, Technical Reports Series Np. 483, IAEA, Vienna, 2017.

Research Institute for Measurement and Analytical Instrumentation

外部放射線治療用水吸収線量の 現地校正技術の開発

○清水 森人¹, 佐藤 優樹^{1,2}, 平山 憲^{1,2}, 齋藤 拓也^{1,2}, 森下 雄一郎¹ ¹放射線標準研究グループ, ²駒澤大学

____ 1. 開発の背景

産総研への設置が難しい最新の放射線治療装置に対して、水吸収線量標準の供給を行うため、水吸収線量の現地校正技術を開発した。

表 標準未整備の放射線治療装置

装置名	放射線の種類	備考
サイバーナイフ	FFF高エネルギー光子線	国内26台
トモセラピー	FFF高エネルギー光子線	国内43台
陽子線治療装置	陽子線	国内18施設
炭素線治療装置	炭素線	国内6施設
FLASH放射線治療装置	超高エネルギー電子線 陽子線	開発中
kV-X線治療装置	X線	開発中

2. 開発の内容

治療装置の個体差への対応

従来法:治療装置(線源)毎に補正係数を導出する →現地校正では対応が難しい

現地校正:線質に対する補正係数の関係から、補正係数を導出する ※放射線治療装置は標準化が進み、装置間の個体差はそれほど無い

サイバーナイフ装置での妥当性確認

サイバーナイフからのFFF高エネルギー光子線水吸収線量について電離箱(Exradin A19, A12S)の校正を行い、線質変換係数 (k_0) を決定し、計算値と比較した。

$$k_Q = \frac{N_{\text{w},Q}}{N_{\text{w},Q_0}}$$

	Present k _Q	JSMP 12 k_Q	TRS-483 k_Q/k_l^{**}	
Exradin A12S	0.9875 (64)	0.996 (10)	0.990 (10)	1.0035
Exradin A19	0.9879 (65)	0.996 (10)	0.990 (10)	1.0122

%TRS-483の線質変換係数は動径方向の線量分布に対する補正(\mathbf{k}_{i})が含まれているため、その分を補正した値を示す。

3. 結論および今後の展開

水吸収線量を医療施設などにおいて絶対計測し、電離箱線量計を校正する現地 校正技術を開発した。来年度に校正サービスを開始することを目標として、準備 を進める。

> 技術を社会へ Integration for Innovation

分析計測標準研究部門 第5回シンポジウム

「技術革新を支援する計測・分析ソリューション」 JASIS2019 コンファレンス 報告集

2019年10月30日 発行

編 者 国立研究開発法人 産業技術総合研究所 計量標準総合センター 分析計測標準研究部門内 「第5回分析計測標準研究部門シンポジウム」実行委員会

野中 秀彦、齋藤 直昭、権太 聡、丸山 真澄、徳宿 由美子、吉田 明子

TEL: 029-861-5300 FAX: 029-861-5881

URL: https://unit.aist.go.jp/rima/index.html e-mail: rima-sympo-ml@aist.go.jp

発行者 国立研究開発法人 産業技術総合研究所 計量標準総合センター 分析計測標準研究部門

発行所 国立研究開発法人 産業技術総合研究所

305-8568 茨城県つくば市梅園 1-1-1 つくば中央第二

著者または編者の許可なく本報告集の全部もしくは一部を転載あるいは複製することを禁じます。 Printed in Japan

