PREDICTION OF ENERGY EXPENDITURE FROM IMUs FOR BOTH OVERGROUND AND TREADMILL WALKING

Kanako Kamishita^{1 2}, Sauvik Das Gupta², Megumi Kondo¹, Yoshiyuki Kobayashi²

¹Ochanomizu University, Japan ²National Institute of Advanced Industrial Science and Technology (AIST), Japan

Introduction

- The modern urban lifestyle leads to sedentarism (e.g., obesity, physical inactivity...)
 - => Results in many lifestyle-based diseases¹
- Energy Expenditure(EE) is a key tool to measure physical (in)activity
 - => The gold-standard -> indirect calorimetry, is Impractical to use in daily-life.
 - => Smartwatches and activity monitors have poorer accuracy and are unreliable²
- Replicate and extend the Open Metabolics system (from Stanford U)² for a Japanese young population with low physical activity³
 - => Extension to overground walking and different speeds

Conclusion

✓ Full replication remains a challenge, but smarter algorithms are key to EE prediction

- Anthropometric differences between the participants' pool
- Few participants in the original model $(N=13^2)$
- Walking surfaces (only treadmills²)
- Usage of a simple linear regression model?

✓ Plan to build a new prediction model using our own data => real-life environments

- Use a neural network-based approach
- Test new predictions on daily-life gait data based on our trained model

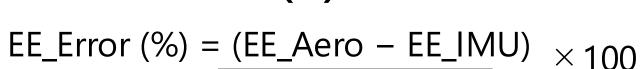
Methods

- Participants
 - 10 Japanese males (age 23.3 \pm 1.4 years | height 1.73 \pm 0.05 m* | weight 63.2 \pm 9.1 kg*)
 - 10 Japanese females (age 21.0 \pm 1.9 years | height 1.58 \pm 0.04 m* weight 49.6 \pm 5.4 kg*)

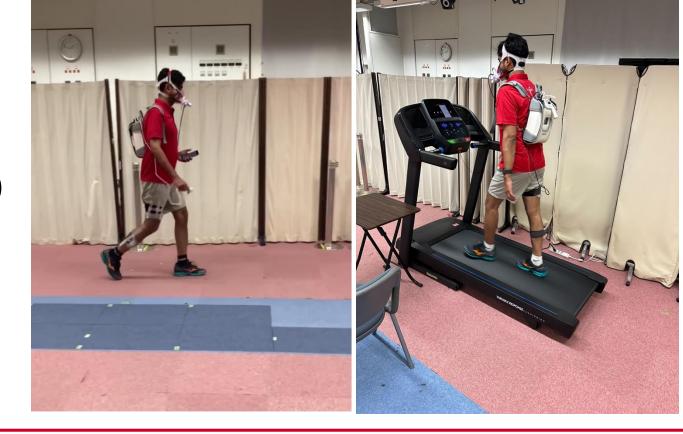
* significantly higher in males (p<0.001)

- Setup
 - Face mask for breath measurement → Mouth
 - Mobile Aeromonitor (Minato Medical Science Co., Ltd.,) → Back
 - Put four 3-axes IMUs (Movella Inc.) → Thighs and shanks @60Hz
- Walking Conditions
 - Overground (OG) & Treadmill (TM)
 - 3 speeds : Slow 1.0m/s | Comfortable 1.3m/s | Fast 1.5m/s
 - Face mask (breath-by-breath measurement)
 - Shoe-type controlled
 - Randomized cross-over design

10 min TM familiarization \rightarrow 5 min resting trial \rightarrow Waling Trials : 6 min \times 6 conditions (with 4-min rest between every walking trial and 10 mins rest between changing of OG and TM)


Error comparison method

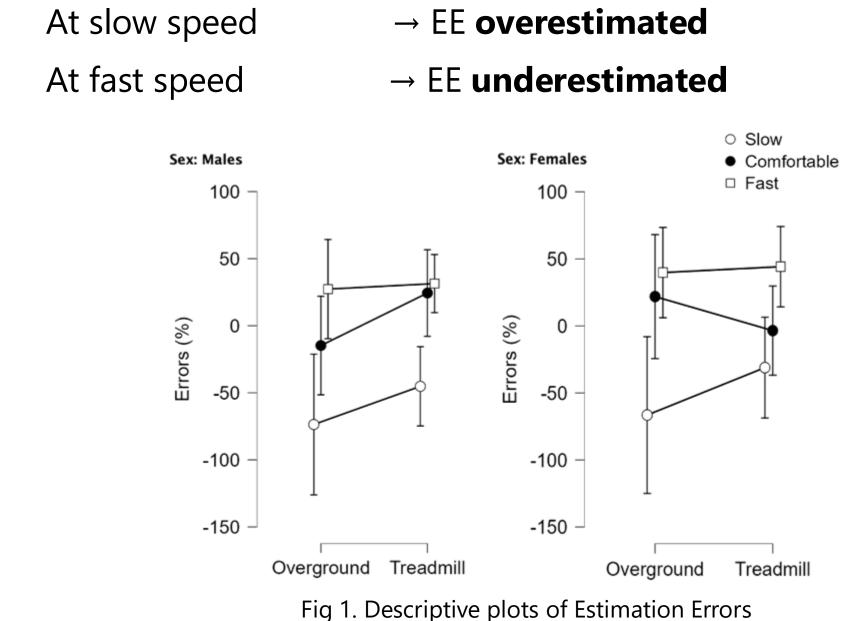
Reference EE: Mobile Aeromonitor (Ground truth)

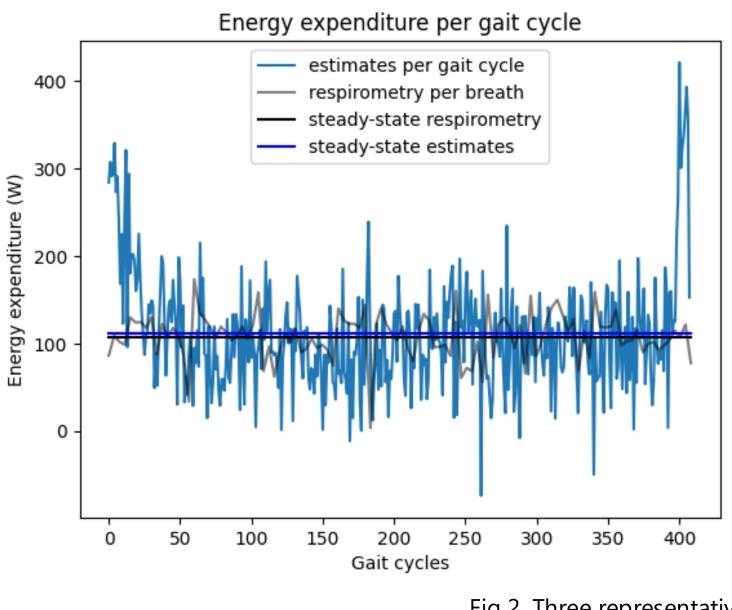

- EE_Aero=(15962+5155 \times RER) \times VO₂ \times 60 \times body weight ⁴
 - RER=Respiratory Exchange Ratio
 - VO₂=Oxygen consumption rate

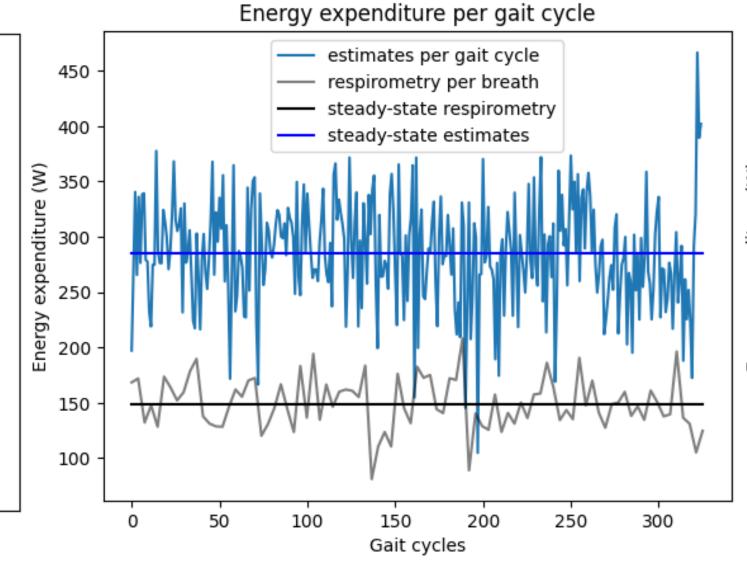
Estimated EE: from IMUs (IMU predictions)

• EE_IMU=Open-source model (Stanford University) **Estimation Error (%)**

EE_Aero




Results


The IMU-estimated EE showed substantial variation across participants and speeds* (p<0.001*) & TM showed smaller estimation errors than OG

Tendencies

At comfortable speed → relatively the **best predicted** condition

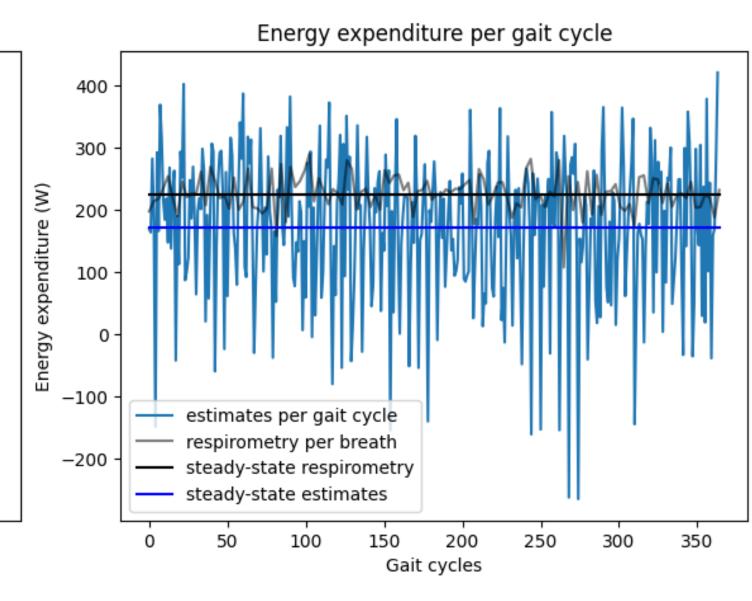


Fig 2. Three representative IMU based EE predictions compared to ground-truth EE. (BLUE=IMU predictions, BLACK=Ground truth)

Discussion

✓ IMU-based EE estimation is feasible, but currently inaccurate and only partially replicable ✓ We were unable to (completely) replicate the results of Slade et al., $(2021)^{2}$

Possible Reasons

- Small training sample (N=13) in the original model?
- Anthropometric differences between the participants' pool (USA v/s Japan)?
- Differences in walking surface (only TM in the original model)?
- Simplicity of the linear regression approach?

Future Work

- We plan to train a neural network-based model using our dataset and evaluate its generalizability to new participants
- => Extension from laboratory-overground to daily life gait data

References

- 1) Luo, Y., & Wang, S. Urban living and chronic diseases in the presence of economic growth: Evidence from a long-term study in southeastern China. (2022). Frontiers in Public Health, 10, 1042413.
- 2) Slade, P., Kochenderfer, M.J., Delp, S.L. et al. Sensing leg movement enhances wearable mo nitoring of energy expenditure. Nat Commun 12, 4312. (2021). https://doi.org/10.1038/s41 467-021-24173-x
- 3) Wakui S, Shimomitsu T, Odagiri Y, Inoue S, Takamiya T, Ohya Y. Relation of the stages of ch ange for exercise behaviors, self-efficacy, decisional-balance, and diet-related psycho-beh avioral factors in young Japanese women. J Sports Med Phys Fitness. (2002). Jun;42(2):224 -32. PMID: 12032420.
- 4) Lusk G. Animal calorimetry. Twenty-fourth paper. Analysis of the oxidation of mixtures of c arbohydrate and fat. A correction. J Biol Chem. (1923). 59:41–42

