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Flow measurement: 
some problems to solve 

and some surprises

Dr Michael Reader-Harris, 
NEL



• 1  Difficult Reynolds numbers
– 1.1  Heavy oil
– 1.2  LNG

• 2  Difficult installations
– 2.1  Emissions
– 2.2  Flare gas

• 3  Difficult fluids
– 3.1  Carbon dioxide
– 3.2  Wet gas flow
 Venturi tubes
 Orifice plates

Scope



• Worldwide reserves of heavy hydrocarbons now significantly 
outweigh conventional light crudes.

Difficult Reynolds numbers: 1.1  Heavy oil



Ultrasonic 4” Multipath
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•

Ultrasonic 4” Multipath
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Coriolis – uncorrected data
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Coriolis– uncorrected data
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1 Reynolds number issues

• 1.1 Heavy oil
– Performance may be difficult through 

transition (ultrasonic)
– Performance may be different below 

transition (Coriolis)
– Air entrainment
– Extension to 1500 cSt

• 1.2 LNG
– The Reynolds number in LNG (or in 

pressurized hot water) is much higher 
than in cold water



Difficult Reynolds numbers: 1.2 LNG

Most measurement is on board ship, but it would be good to 
use a flowmeter



Test Programme

• Flow meters:
– Coriolis
– (Ultrasonic)

• Test plan - performance evaluation:
– Water (20 oC) at NEL
– Liquid N2 (-193 oC) at NIST
– Retest with Water



Coriolis – Water - Mass

Test 1
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Measurements:-
• 5 points over test range

• Each point repeated 4 times 

• Tests repeated 4 times

Results:
• Good repeatability

• Good reproducibility

• All measurements are within 
claimed accuracy



One test was taken 
with no insulation 
jacket

4 tests were taken 
with insulation jacket



Liquid N2 Calibration Results- Mass
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Results

Coriolis: 
– Good results: within 0.2%
– Water calibration can be successfully transferred to cryogenic 

conditions if allowance is made for the non-linear temperature 
dependence of the Young’s Modulus of elasticity of stainless steel.



Next stage

Coriolis: 
– Compare water results with LNG results



Difficult Installations: 2.1 Stack emissions



• Significant work was undertaken in the 1960s and 1970s to 
establish the uncertainty of flowrates measured with pitot tubes.  

• Errors of less than 1% were regularly obtained if the utmost care 
was taken in good flow conditions.  

• An uncertainty of not greater than 2% can be achieved by following 
ISO 3966 (: 4.1).  To do this corrections are required and were 
determined together with the uncertainty. 

.

Stack emissions: are Pitot tubes a good method of flow 
measurement? 



The problem: errors using Pitots 

• Compressibility correction factor
• Head loss
• Transverse velocity gradient
• Reynolds number
• Turbulence
• Static hole error
• Wall proximity
• Blockage
• Misalignment
• Swirl
• Integration scheme

• Asymmetry
• Leakage
• Positioning
• Diameter
• Unsteadiness
• Vibration
• Differential pressure
• Density



Systematic, correctable over-reading

Transverse velocity gradient 0.4%  0.4%
Turbulence 1.25%  0.75%
Swirl 1.5%  1.5%
Blockage 0.4%  0.4%
Integration scheme (ISO 10780) 1%
TOTAL 4.5%



Problem

• Discarding good flow measurement in the quest for simplicity
• The stack emissions standards (e.g. ISO 10780) need to be changed.



Difficult Installations: 2.2 Flare gas

EU Emissions Trading Scheme 
• Phase I (2005 – 2008) – Trial period
• Phase II (2008 – 2012) – Mandatory

• Sets maximum uncertainty level on activity data (flowrate)
• UK Offshore = Tier 2 (12.5% on m3/yr)
• Highest tier = Tier 1 (7.5% on m3/yr) 

• Phase III (2013 - 2020)
 Free allocations will reduce to 80%, reducing annually to 0% in 

2020
 No free allowances for electrical power generation
 Offshore electricity production will be hit hard
 Direct-drive equipment will get allowances



Functions of a flare system

• Ultimately a safety relief system
− Emergency Blow-Downs
− Pressure relief
− Venting of vessels etc. for maintenance

• c 30% of UK offshore CO2 emissions



Flare metering - issues

• Typically no calibration = no traceability to Standards

• Very wide velocity range (> 1 000:1)

• Minimal pressure drop required

• Large line sizes

• Liquids, solids, low temperatures

• Winds causing pulsations, noise

• Installation errors can be large



Ultrasonic Flare Gas Meters

• Most widely adopted technology for flare

• Very wide range (> 2 000:1 is quoted)

• Wide turndown, negligible pressure loss

• Can calculate Density = f(SOS, T, p) using 
proprietary correlations



Difficult Fluids: 3.1 Carbon Capture & Storage
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The issue

• Kyoto Protocol

• CO2 could be captured and stored

• It will need to be measured

• Total UK emissions = 548 million tonnes

• Suppose mass flow uncertainty is 1.5% 

• If CO2 price = $45 per tonne uncertainty ≈ $375 million

• But at 5c per tonne uncertainty ≈ $0.4 million



Pure CO2 Phase Diagram
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Liquid and vapour 
phases in co-existence 
– distinct meniscus

Liquid and vapour 
phases in co-existence 
– visible meniscus

Liquid and vapour densities 
converging – barely visible 
meniscus

Single phase 
supercritical fluid – no 
meniscus

CO2 going supercritical



Operating regions
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Potential CCS Metering Technologies

• CO2 has been metered for 30 years in EOR applications
– no legislation on accuracy (sacrificed for cost)
– not as stringent on impurities
– shorter pipe distances

• However, a number of metering technologies could be suitable
– DP metering
– volumetric metering
– mass metering (Coriolis)
– non-invasive metering



Difficult Fluids: 3.2  Wet gas

• Increasing need to measure wet gas or multiphase
• Separators are very large and expensive



Two possible ways of measuring wet gas

• Venturi tubes
• Orifice plates



Look at Venturi tubes in dry gas first

• In incompressible flow Bernoulli gives

• In practical application
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Discharge coefficients

• Should the discharge coefficient, C, always be less than 1? 

𝑚,𝑔𝑎𝑠 4
2

1,𝑔𝑎𝑠  



4” (100 mm) Venturi tubes in gas: Surprise 1
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C v throat velocity: 4”  = 0.65 Venturi

 

1.005

1.010

1.015

1.020

1.025

0 10 20 30 40 50 60 70 80 90

C

Throat velocity (m/s)

4 inch (20 bar)

4 inch (70 bar)



Static Hole Error

• The difference between the pressure measured with a 
tapping hole of finite size and that which would have 
been measured using an infinitely small hole:

• dp shift in pressure,  wall shear stress, density,         
 kinematic viscosity, dtap tapping diameter
.

dp
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Streamline contours in pressure slot

RSM+wr model with ReD at: 
a) 2.0106, b) 5.3106, c) 2.0107.

a)                                       b)                                   c)



Static hole error: low Reynolds number (Red < 2 x 106)

Leads to increase of 
0.6% in measured C

8”, β = 0.5, 4 
mm taps, Red
= 106



Static hole error: high Reynolds number (up to Red > 107)

Same points from McKeon & Smits as on 
previous slide



Static hole error: low Reynolds number (Red < 2 x 106)

Leads to increase of 
0.6% in measured C

8”, β = 0.5, 4 
mm taps, Red
= 106



Static hole error: high Reynolds number (up to Red > 107)

Same points from McKeon & Smits as on 
previous slide



Venturi discharge coefficient: why the surprise in the 1990s?

• Simple physical explanation of C was inadequate
• Literature (mostly c 1960 – 75) was not well known
• The extrapolation was wrong



Wet Gas Facility
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4” & 6” Ultrasonics 
in parallel Test Section

Pre-Separator

8” Pipework



Wet-gas correlations  ( is the overreading)
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4” Venturi  = 0.6, 1,gas/liquid = 0.024, Frgas = 1.5 
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Wet-gas C based on 0.02 < X < 0.065
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Determine new value for n and C using extended data set

H = 1 for hydrocarbon
1.35 for water, 
0.79 for very hot water 

Limits of use
• 0.4    0.75
• 0 < X  0.3
• 3 < Frgas,th

• 0.02 < gas/liquid

• D ≥ 50 mm
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Use of wet-gas correlations for Venturi tubes 

1,gas2
,gas 4

2

41
m

pCq d








2
Ch1 C X X   

liquid 1,gas
Ch

1,gas liquid

n n

C
 
 

   
       
   

If C is the dry-gas value this pattern is inadequate; there is an 
effective wet-gas discharge coefficient: Surprise 2



Wet-gas flow through Venturi tubes: 
ISO/TR 11583 (NEL) equation: NEL database
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Wet-gas flow through Venturi tubes: 
de Leeuw Equation: NEL database
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My theory

• In wet-gas flow there is a thin film of liquid on the wall.
• The dry-gas discharge coefficient no longer matters
• There is no resonance.
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My theory

• In wet-gas flow there is a thin film of liquid on the wall.
• The dry-gas discharge coefficient no longer matters (there is no resonance).
• Errors for two Venturi tubes from the ISO/TR 11583 (NEL) Equation:
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Mean dry-gas point: C(dry) = 1.0331



Surprise 3

• Uncalibrated Venturi tube uncertainty
– Dry gas 3%
– Wet gas 2.5 to 3%
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Wet gas

• Given an uncalibrated Venturi tube and an uncalibrated 
orifice plate, which has the lower uncertainty?



Wet-gas flow through Venturi tubes: 
ISO/TR 11583 (NEL) equation: NEL database

-4

-3

-2

-1

0

1

2

3

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

%
 E

rr
or

 in
 g

as
 m

as
s 

flo
w

ra
te

X

All regression and validation data



Wet-gas flow through orifice plates: ISO/TR 11583 (Steven)
equation: NEL database

-4

-3

-2

-1

0

1

2

3

4

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

%
 e

rr
or

 in
 g

as
 m

as
s 

flo
w

ra
te

X



Wet gas: Surprise 4

• For an uncalibrated Venturi tube and an uncalibrated orifice 
plate which has the lower uncertainty?

The orifice plate



Measurement over a range of 10000:1

• How can I measure natural gas in a 4” pipe as the flow 
declines over years over a flowrate range of 10000:1?



ConocoPhillips: 4” orifice run: spark-eroded plates
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ConocoPhillips: 4” orifice run: spark-eroded plates
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4” orifice run
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10,000:1 is available: Surprise 5
(about 8 plates and remember e/d
 0.1)



The discharge coefficient, C, is given by the Reader-Harris/ 
Gallagher (1998) equation:

A = (19000/ReD)0.8

upstream and 
downstream tapping terms
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It is 1988: will differential-pressure meters last another 30 years?

They have improved!
• Diagnostics
• Better dp transmitters
• Better standards



Diagnostics

• Use PL/P to show that a meter is out of specification, even to correct 
a measurement

• ‘Prognosis’ (DP Diagnostics)
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Differential-pressure transmitters (Yokogawa EJX110A)
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Better standards: 24” gas data: flange tappings
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The real surprise is not using the new 
standards



Scope of this talk

• 1  Difficult Reynolds numbers
• 1.1  Heavy oil
• 1.2  LNG

• 2  Difficult installations
• 2.1  Emissions
• 2.2  Flare gas

• 3  Difficult fluids
• 3.1  Carbon dioxide
• 3.2  Wet gas flow

• Venturi tubes
• Orifice plates
• There are surprises



Even for flow metrologists…

• There are surprises
– Discharge coefficients – greater than 1
– Wet gas – orifice plates can perform very well

- wet-gas Venturi tubes have a different effective 
discharge coefficient

– 10000:1 – use a set of orifice plates
– Pitot tube standards





Written by a metrologist?



What do others think when at a party you say 
‘I’m a metrologist?’

• Someone who makes minor and dull improvements on 
something that is well known?



Why are we surprised?



Why are we surprised?

• Too simple a physical model
– ‘The Venturi-tube discharge coefficient just describes the 

friction loss’
– ‘A single power of Reynolds number will be sufficient for an 

orifice plate’



Why are we surprised?

• Too simple a physical model
• Ignorance of other work

– Static hole error
– Better differential-pressure transmitters



Why are we surprised?

• Too simple a physical model
• Ignorance of other work
• False assumptions

– Extrapolation will be OK 
– The discharge coefficient is the discharge coefficient
– Damming up must be bad for wet-gas flow through orifice plates
– Diagnostics cannot be used for differential-pressure meters
– New meters must be better



Why are we surprised?

• Too simple a physical model
• Ignorance of other work
• False assumptions
• Standards that need to be improved

– Pitot tubes for emissions



• The Flow Programme of UK BEIS

• NMIJ and the Metrology Club
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