Ge incorporated $\text{Cu}_2\text{ZnSnSe}_4$ thin-film solar cells

Shinho Kim, Kang Min Kim, Hitoshi Tampo, Hajime Shibata and Shigeru Niki

National Institute of Advanced Industrial Science and Technology (AIST)
Research Center for Photovoltaics (RCPV)
Compound Semiconductor Thin Film Team
Introduction – Kesterite solar cells

CZT(S)Se

- In, Ga → Zn, Sn
- High absorption coefficient
 - $\alpha > 10^4 \text{ cm}^{-1}$
- Using the earth abundant materials
- Production cost down
Introduction – Band gap tuning of kesterite thin films

Band gap tuning with S incorporation

Problems of S incorporation

- The control of $S/(S+Se)$ ratio is difficult due to the high volatility of the anionic components.
- Large V_{OC} deficit ($E_g/q-V_{OC}$) with S incorporation
 - $CZTSe \approx 0.577 \text{ mV} \rightarrow CZTSSe \approx 0.647$, (at champion cells respectively)
 - Ex) CIGSe ≈ 0.5
- Low FF
 - Low V_{OC} and high ideality factor (A)
 - Secondary phase problems

$\sim 1.0 < E_g(CZT(S_xSe_{x-1})) < \sim 1.5 \text{ eV}$

Ge incorporated CZTSe (CZTGSe)

- Tunable band-gap using cationic element
 \[\sim 1.0 < E_g(CZTGSe) < \sim 1.5 \text{eV} \] controlled by Ge/(Sn+Ge) ratio.
- Reduced \(V_{OC} \) deficit
- Large grain growth caused by GeSe\(_2\) liquid phase

![Graph showing the relationship between energy and (d\(\alpha/d\theta\))^2 \(\times 10^8 \text{(eV/cm)}^2\) for different Ge/(Sn+Ge) ratios.](image)

![SEM image of Ge incorporated CZTSe film with a scale bar of 1 \(\mu\)m.](image)
I-V Results of Ge incorporated Cells

<table>
<thead>
<tr>
<th>Cell</th>
<th>Eff. (%)</th>
<th>V_{OC} (V)</th>
<th>J_{SC} (mA/cm²)</th>
<th>FF (%)</th>
<th>E_g (eV)</th>
<th>$E_g/q-V_{OC}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZTGSSe Perdue Univ. (2013)</td>
<td>9.40</td>
<td>0.460</td>
<td>31.9</td>
<td>63.8</td>
<td>1.19</td>
<td>0.730</td>
</tr>
<tr>
<td>CZTGSSe AIST (2015)</td>
<td>10.03</td>
<td>0.543</td>
<td>29.5</td>
<td>62.7</td>
<td>1.19</td>
<td>0.647</td>
</tr>
<tr>
<td>CZTSe IREC (2015)</td>
<td>10.60</td>
<td>0.473</td>
<td>34.3</td>
<td>65.1</td>
<td>1.03</td>
<td>0.550</td>
</tr>
<tr>
<td>CZTGSSe Univ. of Washington (2016)</td>
<td>11.00</td>
<td>0.583</td>
<td>33.6</td>
<td>55.9</td>
<td>1.30</td>
<td>0.717</td>
</tr>
</tbody>
</table>

Experimental Procedure

Co-evaporation

As grown CZTGSe deposited by co-evaporation method.
Composition Control

Annealing

Sample

Internal gases flow

Annealing using two zone furnace

Grain Growth

CZTGSe solar cell structure

Al
AZO
i-ZnO
CdS
CZTGSe
Mo
SLG
New efficiency of Ge incorporated kesterite solar cell

- The highest efficiency of Ge incorporated kesterite solar cell greater than 12%
Device parameters

<table>
<thead>
<tr>
<th>Cell</th>
<th>Eff. (%)</th>
<th>V_{OC} (V)</th>
<th>J_{SC} (mA/cm2)</th>
<th>FF</th>
<th>R_s (Ω·cm2)</th>
<th>R_{sh} (Ω·cm2)</th>
<th>A</th>
<th>J_0 (A/cm2)</th>
<th>E_g (eV)</th>
<th>E_g/q-V_{OC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZTSSe IBM (2013)</td>
<td>12.60</td>
<td>0.513</td>
<td>35.2</td>
<td>0.698</td>
<td>0.72</td>
<td>621</td>
<td>1.45</td>
<td>7.0E-8</td>
<td>1.13</td>
<td>0.617</td>
</tr>
<tr>
<td>CZTGS Se AIST (2015)</td>
<td>10.03</td>
<td>0.543</td>
<td>29.5</td>
<td>0.627</td>
<td>0.20</td>
<td>694</td>
<td>2.49</td>
<td>6.3E-6</td>
<td>1.19</td>
<td>0.647</td>
</tr>
<tr>
<td>CZTGS Se AIST (2016)</td>
<td>12.32</td>
<td>0.527</td>
<td>32.2</td>
<td>0.727</td>
<td>0.36</td>
<td>1111</td>
<td>1.47</td>
<td>3.6E-8</td>
<td>1.11</td>
<td>0.583</td>
</tr>
</tbody>
</table>

- Highly improved fill factor over 0.7
- Reduced device parameters – A, J_0 and V_{OC} deficit
 → Improved junction quality and reduced carrier recombination in SCR
Atomic ratio of CZTGSe thin films (EPMA)

Efficiency shows similar tendency with FF.

Optimized surface conditions are observed at Cu/Zn=1.9 and Zn/IV=1.2.
LifeTime measurement by TRPL

- Improved carrier life time
- PL peak is closed to the band edge position (≈0.03) – it may be beneficial effect in reducing V_{OC} deficit

<table>
<thead>
<tr>
<th>Cell</th>
<th>Eff. (%)</th>
<th>Lifetime (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZTSSe IBM (2013)</td>
<td>12.60</td>
<td>6.7</td>
</tr>
<tr>
<td>CZTGSe AIST (2015)</td>
<td>10.03</td>
<td>2.5</td>
</tr>
<tr>
<td>CZTGSe AIST (2016)</td>
<td>12.32</td>
<td>5.6</td>
</tr>
</tbody>
</table>

$E_g = 1.1 \text{ eV}$

$E_{opt} = 1.08 \text{ eV}$
Summary

• We demonstrate new results of Ge incorporated kesterite thin-film solar cell.
 – High efficiency greater than 12%
 – Large improvement in FF over 0.7
 – Improved junction quality and reduced carrier recombination in SCR
 – A, J_0 and V_{OC} deficit
 – Increased carrier life time
Thank you for your attention!