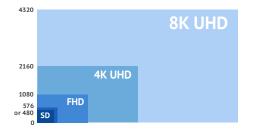
Ultra-High Definition Videos and Their Applications over the Network

assoc. prof. Petr Holub, Ph.D. CESNET & Masaryk University hopet@ics.muni.cz

The 7th International Symposium on VICTORIES Project,

2014-10-08

What is UltraHD and why we need it


Applications showcase: UltraGrid & SAGE & CoUniverse

Future of networked media applications

What Does UltraHD Mean?

- Video beyond High-Definition (HD)
 - there is some historical confusion: 4K vs. 8K video
 - 2160p aka SuperHD/SHD: 3840×2160 (8 Mpix)
 - 4K in cinema: 4096×2048, 4096×2160
 - 8K/4320p: 7680×4320 (33 Mpix)
 - scalable display systems: 55-100 Mpix or higher

Why Do We Need UHD?

- Limitation: angular resolution of human eye, 1 arcminute for 20/20 (normal) sight
 - optimal viewing angle
 - HD video: 30°
 - 4K video: 55°
 - 8K video: 100°
 - if we had 65" TV, we would need to get as close as
 - HD video: 114" (2.9 m)
 - 4K video: 57" (1.4 m)
 - 8K video: 29" (.7 m)

Why De We Need UHD?

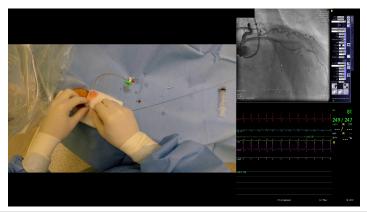
Human eye has uneven resolution

 \implies if a viewer is allowed to move his head, we need to increase *both spatial and temporal resolution*

Why De We Need UHD?

- Scaling temporal resolution:
 - cinematography: 24 fps, recently 48 fps
 - broadcasting: 25/30/50/60 fps
 - computer systems: 60 fps
 - 8K video: 120 fps
- Higher temporal resolution: 300-10.000 fps
 - beyond the human perception in real-time
 - analysis of various processes: industry, sports, military, ...

SANNA RECOMPTION


Why De We Need UHD?

- Improving color detail
 - 8 b or 10 b per color component in broadcasting
 - up to 16 b for more demanding applications:
 - e.g., pathology

Why De We Need UHD?

 Invasive cardiology – simultaneous real-time analysis of multiple modalities (X-ray, FFR, OCT, etc.)

Sound In the second sec

Why De We Need UHD?

- Scientific visualizations large data analysis
 - geosurvery, pathology: >1 Gpix imagery
 - collaborative data/image sharing
 - remote control of instruments

Sound In the second sec

Why De We Need UHD?

- Arts & education
 - distributed performances: music, theater

What Does That Mean for Network?

Uncompressed video bitrates [Gbps]:

Resolution	30 fps, 8 b	60 fps, 10 b	120 fps, 16 b
HD – 1080p (1920×1080)	1.5	3.7	12
4K - 2160p (3840×2160)	6	15	48
8K - 4320p (7680×4320)	24	60	191

Do We Need Uncompressed Data?

- In most cases NO
 - because of limits of human eye
 - for archival applications, lossless compression is an option: but provides only limited data reduction $(\approx *\frac{2}{3})$
- Experiments with human sight
 - HD video can be brought from 1.5 Gbps to \approx 80 Mbps M-JPEG without user being able to tell the difference in terms of image quality
 - experimentally confirmed in cardiology and cinematography for real-time applications (not archival) using ABX tests¹

¹HOLUB P., ŠROM M., PULEC M., MATELA J. a JIRMAN M. GPU-accelerated DXT and JPEG compression schemes for low-latency network transmissions of HD, 2K, and 4K video. *Future Generation Computer Systems*: Elsevier Science, 2013, vol. 29, n. 8, pp. 1991–2006. ISSN 0167-739X.

AND IN SARVICE AND BELLEVISE

What Does Interactive Mean?

- Specifics of interactive (= real-time) applications: human perception of latency
 - ITU-T G.115: 150 ms one way latency for phone (audio communication)
 - some applications can tolerate about 200 ms one-way delay (experiments with remote control of medical robots)

- some application are much more sensitive
 - music orchestras: 10–40 ms (chamber-symponic)
- Interactivity limits amount of processing
 - very limited buffering needed
 - compression often limited to intra-frame or progressive inter-frame schemes

UltraHD Video Wrap-Up

- We need to consider limitations of human perception when optimizing video applications.
- 4K/8K UHD spans wide range of bitrates
 - uncompressed: 6 Gbps >100 Gbps
 - compressed: starting from 60 Mbps for interactive applications
 - streaming applications can go substantially lower
- End-to-end one-way delay below 150 ms is acceptable for most of the interactive applications
 - specific applications may require 10-40 ms range

How can we transport it over the network, esp. for interactive applications?

What is UltraHD and why we need it

Applications showcase: UltraGrid & SAGE & CoUniverse

Future of networked media applications

SANNO - MASARYKUMU BELLEVES - SANNO - METHODALA

UltraHD on Commodity HW

- Dedicated hardware solutions are paving the path toward the future...
 - ... but to make the technology widely available, it is neccasary to make it work also on commodity systems
 - dedicated hardware will remain an option only for the most wide-spread technologies for the commodity systems

Mission of our team at CESNET & Masaryk Univesity:

Explore the limits of commodity hardware for high-resolution image processing and network transmissions.

Applications Showcase: UltraGrid & SAGE & CoUniverse

- UltraGrid: open-source multi-platform application for low-latency network transmissions of HD and post-HD (4K/8K) video
 - developed by CESNET with contributors from around the world
 - http://www.ultragrid.cz/

- SAGE: scalable distributed display system

- developed by EVL UIC
- http://www.sagecommons.org/
- CoUniverse: self-organization for high-bandwidth real-time applications
 - developed by Masaryk Univesity & CESNET
 - http://couniverse.sitola.cz/

Sound WASARTKOWN BEING SOUND - RETURNESS - SOU

UltraGrid Platform

- Technology
 - As high quality and as low latency as possible on commodity hardware
 - commodity video capture cards,
 - commodity GPU cards,
 - 10GE (or better) is a plus but not necessary,
 - Linux, Mac, Windows.
 - A platform for implementing research results, namely
 - compression & image processing,
 - forward error correction,
 - congestion control.
 - End-to-end latency in a local network: 80-150 ms, depending on HW used.

UltraGrid Platform

Interesting milestones

- 2002: Uncompressed 720p.
- 2005: Uncompressed 1080i, multi-point.
- 2007: Low-latency CPU compression-schemes Self-organization Optical multicast
- 2008: 2K/4K
- 2011: GPU compressions
- 2012: 8K Trans-Atlantic multi-point ACM Multimedia Award
- 2013: Comprimato Systems spin-off (GPU JPEG2000)

UltraGrid Platform

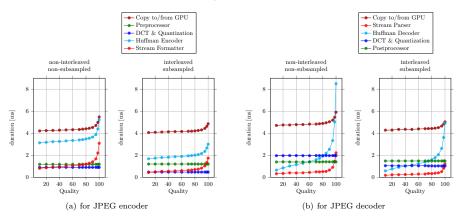
- Supported video formats
 - HD, 2K
 - 4K, 8K tiled or native (single tile)
 - multichannel video (e.g., stereoscopic/3D, tiled)
- Uncompressed vs. compressed video
 - Low-latency compression schemes:
 - GLSL-accelerated DXT1, DXT5-YCoCg
 - CUDA-accelerated JPEG, DXT5-YCoCg
 - CPU-based low-latency H.264 via external X264 library
 - GPU-accelerated JPEG2000 available separately via Comprimato Systems company
 - Parallelization is the key! Not only in the networking technologies...

South MASARYKUNU BEINGS

GPU-Accelerated Compression

- Examples of compressed video bitrates for 4Kp30 over IP:
 - H.264-compressed: 60-200 Mbps
 - JPEG-compressed: 150–400 Mbps
 - DXT-compressed: 1 Gbps
 - uncompressed (RGB 8 b): 6 Gbps

SAGE display with various compressions


GPU-Accelerated Compression

- Fine-grained parallelization of JPEG
 - per-row/column DCT/IDCT
 - per pixel RLE and Huffman coding
 - parallel stream compacting
 - parallel decompression using restart intervals
- Performance numbers (including transfer to/from GPU, NVidia 580GTX)²
 - DXT5 GLSL: 349 Mpix/s
 - JPEG CUDA: up to 1.580 Mpix/s (= 38 Gbps)
 - ... up to 47 fps of 8K UHD on a single GPU (244 W TDP)
 - \ldots and you can parallelize across multiple GPUs
 - ... c.f. CPU: 83-167 Mpix/s, FPGAs: 405-750 Mpix/s
 - DXT5 CUDA: \geq 1.580 Mpix/s

² HOLUB P., ŠROM M., PULEC M., MATELA J. a JIRMAN M. GPU-accelerated DXT and JPEG compression schemes for low-latency network transmissions of HD, 2K, and 4K video. *Future Generation Computer Systems*: Elsevier Science, 2013, vol. 29, n. 8, pp. 1991–2006. ISSN 0167-739X.

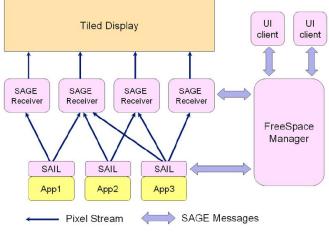
GPU-Accelerated Compression

- Performance of JPEG stages for 2160p video

Forward Error Correction

- LDGM
 - CPU (vectorized using SSE) can be used up to \approx 600 Mbps flows because of CPU \leftrightarrow GPU transmissions overhead
 - CPU performance is insufficient to go beyond 1 Gbps, even when vector parallelism is applied
 - massively parallel GPU implementation is required for 1 Gbps and above
 - ⇒ packet loss up to 10% can be mitigated with reasonable overhead

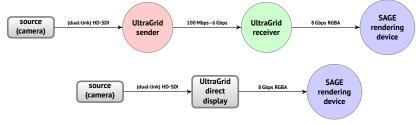
- Developed by Electronic Visualization Lab @ UIC
- Rendering platform & network middleware allowing interconnection of theoretically unlimited number of computers into a single rendering cluster
- Fully parallel architecture on tiled display
 - allows parallel rendering of visualization applications, arbitrary translation and overlap of windows, a few other transforms (e.g., scaling, rotation)
 - supports 100 Mpix per display wall or even more
- Around 100 installations around the world



SAGE: How Does It Work?

- SAGE workspace is controlled by a Free Space Manager (FSManager)
- FSManager knows window coordinates for all applications, thus knowing on which screens the window gets rendered
- FSManager informs producers of graphics data, how the image should be split and where it should be sent to

SAGE: How Does It Work?



SAIL : Sage Application Interface Library

SAGE and UltraGrid

- UltraGrid can render through libSAIL
 - single node and two node modes (bitrates for 4K)

- audio uses SAGE
- measured end-to-end latency: 270 ms

SAGE and UltraGrid

CoUniverse

- Motivation
 - multipoint collaborative environments comprise a large number of components: producers, receivers, distributors (application-level multicast – ALM)
 - ⇒ manual orchestration is cumbersome
 - need to react dynamically to changing network conditions
 - bitrates comparable to capacities of network links
 - 1080p30 HD video over IP: H.264: 20-60 Mbps, M-JPEG: 60-150 Mbps, uncompressed: 1.5 Gbps,
 - 4K is $2-4 \times$ more compared to HD,
 - 8K is $2-4 \times$ more compared to 4K.

Self-organization is needed.

South MUSARYKUMU BEINGS

CoUniverse

- Optimization of ALM = \mathcal{NP} -complete problem.
- Shortest-path/greedy routing may not even provide a solution for bitrates comparable to the capacity of network links.
- Application-level multicast allows for per-client data transformations.
- We need to optimize for:
 - 1. minimization of latency (alternatively equalization)
 - 2. maximization of subjective quality (user perception)
- We would like to integrate with the advanced networks services where available (e.g., on-demand circuits/NSI, SDN)

SUMO HER COMPANY

CoUniverse

- State of the CoUniverse
 - prototype implementation at
 https://couniverse.sitola.cz/
 - builds a self-organizing P2P network using JXTA
 - implements orchestration of UltraGrid
 - solves the *NP*-complete flow scheduling problem using constraint programming or ant-colony optimization techniques (switchable)
 - supports integration with NSIv2 (collaboration with AIST)

What is UltraHD and why we need it

Applications showcase: UltraGrid & SAGE & CoUniverse

Future of networked media applications

Future of Networked Media Applications

- Resolution may grow for specific applications
 - 8Kp120 will be probably sufficient for generic 2D
 - large-scale visualizations and collaborative environments may exceed this
- Complex real-time processing, e.g.,
 - data (re)compression,
 - reconstruction of 3D models from 2D data,
 - anonymization of data for medical applications.
- Capture & transmission of 3D scenes (holography)
- Interaction with the media
 - e.g., touch-based vs. touch-less interaction, haptic feedback

Future of Networked Media Applications

- Better integration of real-time applications with the networks
 - custom routing and multicasting schemes based on SDN (or network programmability in general),
 - complex data processing on network elements failed dream of active networks?
- Improvement of delivery schemes for steaming applications (out of scope of this talk)
 - caching strategies, routing optimization, ...
 - scalability is needed for massive delivery.

Future of Networked Media Applications

- Efficient adaptation to changing network conditions
 - adaptive (e.g., layered) compression schemes,
 - ongoing experiments with congestion control interaction for real-time applications.
- Adaptation of network for applications needs
 - temporary allocation of network resources (BoD services, etc.),
 - use of programmability for optimization of network structure.

South S MASARYKIAN BEING

Selected Relevant Papers

- HOLUB, Petr, ŠROM, Martin, PULEC, Martin, MATELA, Jiří a JIRMAN, Martin. GPU-accelerated DXT and JPEG compression schemes for low-latency network transmissions of HD, 2K, and 4K video. Future Generation Computer Systems, Amsterdam, The Netherlands: Elsevier Science, 2013, vol. 29, n. 8, pp. 1991–2006. ISSN 0167-739X.
- HOLUB, Petr, MATYSKA, Luděk, LIŠKA, Miloš, HEJTMÁNEK, Lukáš, DENEMARK, Jiří, REBOK, Tomáš, HUTANU, Andrei, PARUCHURI, Ravi, RADIL, Jan a HLADKÁ, Eva. High-definition multimedia for multiparty low-latency interactive communication. *Future Generation Computer Systems*, Amsterdam, The Netherlands: Elsevier Science, 2006, vol. 22, n. 8, pp. 856–861. ISSN 0167-739X.
- HOLUB, Petr, MATELA, Jiří, PULEC, Martin a ŠROM, Martin. UltraGrid: Low-Latency High-Quality Video Transmissions on Commodity Hardware. In Proceedings of the 20th ACM international conference on Multimedia. New York, NY, USA: ACM, 2012. pp. 1457–1460. ISBN 978-1-4503-1089-5.
- LIŠKA, Miloš, HOLUB, Petr, LAKE, Andrew a VOLLBRECHT, John. CoUniverse Orchestrated Collaborative Environments with Dynamic Circuit Networks. : 2010 Ninth International Conference on Networks, 2010. pp. 300–305, ISBN 978-0-7695-3979-9.
- MATELA, Jiří, RUSŇÁK, Vít a HOLUB, Petr. Efficient JPEG2000 EBCOT Context Modeling for Massively Parallel Architectures. In Storer, James A. and Marcellin, Michael W.. Data Compression Conference (DCC), 2011. Washington, DC, USA: IEEE Computer Society, 2011. pp. 423–432, ISBN 978-0-7695-4352-9.
- HOLUB, Petr, RUDOVÁ, Hana a LIŠKA, Miloš. Data Transfer Planning with Tree Placement for Collaborative Environments. *Constraints*, Springer, 2011, vol. 16, n. 3, pp. 283–316. ISSN 1383-7133.
- TROUBIL, Pavet, Hana RUDOVÁ a Petr HOLUB. Media Streams Planning with Uncertain Link Capacities. In IEEE 13th International Symposium on Network Computing and Applications NCA 2014. USA: IEEE, 2014. pp. 197-204, ISBN 978-1-4799-5393-6

Thank you for your attention!

Q?/A

assoc. prof. Petr Holub, Ph.D. CESNET & Masaryk University hopet@ics.muni.cz