

第9回「光ネットワーク超低エネルギー化技術拠点」シンポジウム

Network Application Interface

	High Performance SDN Virtual Switch for NFV Infrastructures	Hirokazu Takahashi, Norio Sakaida, and Katsushiro Shimano		SDN/NFV provides agility and flexibility for network services. However, virtual switches for NFV infrastructures can be bottlenecks. In order to realize high performance SDN virtual switch, we developed a network driver for connecting virtual machines and applied it into our Lagopus.
	A performance analysis mechanism for software-based packet processing	Takahiro Hirofuchi ¹ , Ryousei Takano ¹ and Tomohiro Kudoh ²	Group B	We are developing a mechanism to analyze complex internal behavi packet processing software. It probes ring buffer activities by mear light-weight sampling techniques, records cache miss events
1-2		¹ National Institute of Advanced Industrial Science and Technology (AIST), ² The University of Tokyo		causative memory objects, and visualizes performance bottlenecks. This mechanism enables developers to maximize the efficiency of pipeline parallelism in their multi-staged packet processing programs.

Dynamic Node Technology				
	for Disaggregated Optical	Shigeyuki Yanagimachi, Hitoshi Takeshita, Shigeru Nakamura, and Akio Tajima	Group A	8×32 TransPonder Aggregator blade for dynamic disaggregated optica node using silicon photonics switches is developed. The blade matches the concept of open and disaggregated optical node system proposed by VICTORIES.
		IoT Devices Research Laboratories, NEC Corporation		
N-2	Open & Disaggregated Optical Transport System : 1FINITY	O. Takeuchi, D. Suzuki, K. Komaki, T. Terahara	Group B	Open and disaggregated optical transport platform : 1FINITY and 400Gbps muxponder : T200 was developed. That enable users to flexibly and agilely
N 2		Network Products Business Unit, Fujitsu Ltd.		build high-capacity optical network.
	Open and Disaggregated Rack and Standard Blade for DOPN	S. Suda ¹ , K. Ishii1, H. Matsuura ¹ , T. Terahara ² , K. Komaki ² , D. Suzuki ² , S. Yanagimachi ³ , H. Takeshita ³ and S. Namiki ¹	Group A	VICTORIES proposes a concept of open and disaggregated rack and standard blade that mount optical functional modules such as silicon-
N−3		¹ National Institute of Advanced Industrial Science and Technology (AIST), ² Network Products Business Unit, Fujitsu L ³ IoT Devices Labs., NEC Corporation	td.,	based optical switch, CDC-ROADM, and ODU cross-connect for building dynamic optical path networks. It opens up a new way to pay-as-you- grow multiple-vendor platform.
	Functional Capability Description of Optical Nodes for Dynamic and Disaggregated Networks	Kiyo Ishii ¹ , Atsuko Takefusa ² , Ryousei Takano ¹ , Shu Namiki ¹ , Tomohiro Kudoh ³	Group B	Generic description of a network system is important to realize programmable, agile, and open transport networks. Representing functional
		¹ National Institute of Advanced Industrial Science and Technology (AIST), ² National Institute of Informatics (NII), ³ The University of Tokyo		capabilities of various network devices in a common format will enhance network flexibility and availability.
10-5	DOPN Tokyo Test Bed and its Applications	VICTORIES Outreach Group	Group	A test bed field trial of the Dynamic Optical Path Network (DOPN) is now under construction in Tokyo Metropolitan area. DOPN is an optical-switch based low-layer network, whose unique features are ultra-high guaranteed bandwidth, ultra-low latency, and ultra-low energy operation. One of the typical applications is the remote immersive musical session. Using our
6-71		National Institute of Advanced Industrial Science and Technology (AIST)		test bed, clinical applications based onuncompressed 8K real ti transmission, low-cost tele-presence conferencing based on 4K Te Session Systems will be demonstrated. The test bed will be open collaborations.

Optical Path Conditioning

Tomoyuki Kato, Takahito Tanimura, and Shigeki Watanabe

Group Distributed ultra-dense optical multiplexing technology using fiber-

C-1		Tomoyuki Kato, Takahito Tanimura, and Shigeki Watanabe	< 1	equency conversion is investigated. A precise subcarrier multiplexing into
0-1		Fujitsu Laboratories Ltd.		n optical frequency-division multiplexed signal from remote node is emonstrated based on free-running lasers without frequency locking.
C-2		K. Ota,N. Nishikawa	. w	le are developing an optical tunable filter without moving part, based on
0 2		TrimatizLtd.,		an electro-optic effect to tune the central wavelength. It will be possible to increase the tuning speed while enabling an electronic control.
	Monolithic integration of polarization- division multiplexing waveguides and IQ modulators for high-speed optical signal generation Possible phase noise reduction of TDA-CSG-DR tunable lasers by external optical feedback	N. Ishikura ¹ , K. Goi ¹ , H. Zhu1, M. Illarinov ¹ , H. Ishihara ¹ , A. Oka ¹ , K. Mashiko ¹ , T. Ori ¹ , K. Ogawa ¹ , Y. Yoshida ² , K. Kitayama ³ , TY. Liow ⁴ , X. Tu ⁴ , GQ. Lo ⁴ , DL. Kwong ⁴	3 M	lonolithic photonic integrated circuit consisiting of polarization-division nultiplexing waveguides and IQ Mach-Zehnder modulators are designed
0.5		¹ Fujikura Ltd., ² National Institute of Information and Communications (NICT), ³ School for the Creation of New Photonics Industries, ⁴ Institute of microelectronics, Singapore	s m	and fabricated on the basis of silicon photonics platform. Beyond-100G modulation in various modulation formats with drive voltage amplitude of 2VPPD or lower is demonstrated.
		Toshimitsu Kaneko, Masaaki Okamoto and Katsumi Uesaka	to de	n effect of external optical feedback to laser diodes was investigated oward higher-level modulation in digital coherent system. A 320MHz-1 elayed feedback to TDA-CSG-DR tunable laser significantly reduced
		Sumitomo Electric Industries, Ltd., Japan	in	hase noise at ~100MHz in Fourier frequency. A further investigation indicated that faster feedback is necessary to obtain effective ransmission quality.
C-5	Development of High-speed Monitoring Technology	Hiroshi Ohta, Futoshi Shirazawa, Takanori Goto	3 W	/e introduce the monitoring technology, constellation measurement of 00-Gbit/s DP-QPSK signal and signal wavelength measurement with
		Alnair Labs Corporation		igh-speed measurement time. The constellation was observed utilizing OP, and the signal wavelength was measured based on polychromator.
	Squeezing of optical phase noise without phase-to-amplitude noise conversion	Takayuki Kurosu and Shu Namiki	in w	e present a method to reduce phase noise of optical signals without a creasing amplitude noise. The proposed concept was implemented by a
0-0		National Institute of Advanced Industrial Science and Technology (AIST)		ovel technique called hybrid phase squeezer (HOPS) and successfully pplied to reduce the phase noise of BPSK signals.
C-7	All-Optical Wavelength Converter for WDM signals	Takashi Inoue ¹ , Kazuya Ota ² , Shigehiro Takasaka ³ , and Shu Namiki ¹		e develop a format-agnostic and guard-band-less all-optical wavelength onverter which is capable of multi-channel optical signals. The proposed
0-7		¹ National Institute of Advanced Industrial Science and Technology (AIST), ² Trimatiz Ltd., ³ Furukawa Electric Co., Ltd.		tructure and preliminary experimental result on multi-channel wavelength onversions are discussed.

Poster Presentations

Group A 13:15-14:00

B Group B 15:30–16:30

Optical Path Processor				
P-1	1x8 Compact Silicon Splitter and Switch with on-Chip Optical Amplification by Flip-Chip Bonded InP -SOA	Takeshi Matsumoto ¹ , Teruo Kurahashi ¹ , Ken Tanizawa ² , Keijiro Suzuki ² , Ayahito Uetake ¹ , Kazumasa Takabayashi ¹ , Kazuhiro Ikeda ² , Hitoshi Kawashima ² , and Suguru Akiyama ¹ ¹ Fujitsu Laboratories Ltd., ² National Institute of Advanced Industr Science and Technology (AIST)	Group A	We investigated hybrid-integration of an InP semiconductor optical amplifier (SOA) on a silicon photonics chip using flip-chip bonding for on- chip loss compensation. Operation of 1x8 silicon switch is successfully demonstrated with on-chip optical amplification by flip-chip bonded SOA.
P-2	Optical Fiber Connecting Technique Using High−∆ Silica-based PLC	Junichi Hasegawa ¹ , Toshikazu Mukaihara ^{1,} Kazuhiro Ikeda ² , Ken Tanizawa ² , Keijiro Suzuki ² , Hitoshi Kawashima ² ¹ Furukawa Electric Co.,Ltd. ² National Institute of Advanced Industrial Science and Technology (AIST)	Group B	We report on optical fiber connecting techniques between Si waveguides and single-mode fibers. Coupling loss was reduced to 2.1 dB/facet by using high- Δ Silicabased PLC. We aim to further reduce the coupling loss.
P-3	High Port-Count Wavelength Cross- Connect Switch(WXC)	Hisato Uetsuka ¹ , Masao Tachikura ¹ , Masahiro Okawa ¹ , Yao Bin ¹ , Keiichi Sasaki ² ¹ National Institute of Advanced Industrial Science and Technology (AIST), ² Kitanihon Electric Cable Co., Ltd.	Group A	We propose a wavelength cross-connect switch using our newly invented wide-angle steering devices. By using the devices, the port count of WXC can be much increased. Our development target at present is 32x32 WXC, so high-precision 32 port fiber arrays are also developed.
	Fast and accurate calibration method for large-port-count Si-wire PILOSS optical switch	S. Suda, K. Tanizawa, K. Suzuki, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima National Institute of Advanced Industrial Science and Technology (AIST)		We propose a calibration method for N × N Si-wire path-independent- insertion-loss (PILOSS) optical switches with thermo-optic Mach- Zehnder-interferometer (MZI) element switches. Calibration for a 32x32 switch is numerically demonstrated with an error less than 1% within an hour.
P-5	Driving Circuit for 32X32 Optical Matrix Switch using High-resolution Pulse-width Modulation	H. Matsuura, S. Suda, K. Tanizawa, K. Suzuki, K. Ikeda, H. Kawashima, and S. Namiki National Institute of Advanced Industrial Science and Technology (AIST)	Group A	Applied power of 2048 heaters on 32X32 matrix switch are controlled by pulse-width modulation. Using two frequency counters with Vernier-effect, we verified the timing-resolution of 6480 steps with 1 μ s repetition rate. Five FPGAs (Field Programmable Gate Arrays) and other circuits are assembled on a printed circuit board, and it is installed to 1RU-height "Standard Blade".
P-6	Full Path Characterization of 32 × 32 Si–Wire Strictly–Non–Blocking Optical Path Switch	Ken Tanizawa, Keijiro Suzuki, Satoshi Suda, Hiroyuki Matsuura, Kazuhiro Ikeda, Shu Namiki, and Hitoshi Kawashima National Institute of Advanced Industrial Science and Technology (AIST)	Group B	We demonstrate all 1024 path connections of a compact 32 × 32 strictly– non-blocking thermooptic Si-wire switch. Advanced 300-mm wafer fabrication, dense electronic flip-chip packaging, and pulse-width- modulation heater control are successfully integrated.
P-7	8×8 Si PILOSS Switch Based on Double Mach-Zehnder Elements for Broadband Operation	K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima National Institute of Advanced Industrial Science and Technology (AIST)		We review recent achievements in multi - port optical switches based on silicon photonics, in which broadband operation is focused. For wavelength independence, a double Mach - Zehnder switch is adopted, and we demonstrate -20 dB crosstalk in >30-nm bandwidth.

Guest * Guest posters are invited to present the research results and/or activities that are outside the VICTORIES project.				
G-1	Large-Scale Intra-Datacenter Switch Using Silicon-Photonic Multicast Switches and Tunable Filters	Hitoshi Kawashima ² , Shigeru Nakamura ³ , Shigeyuki Yanagimachi ³ , Akio Tajima ³ , and Ken-ichi Sato ^{1,2}	We propose novel optical circuit switch architecture for intra-datacenter networking. The key components, optical multicast switches and tunable filters, are fabricated using silicon photonics. Proof-of-concept transmission experiments are performed using newly developed silicon-	
	Wavelength Selective External Cavity Laser Using an InAs Quantum Dot	Yudai Okuno ¹ , Yoshinori Sawado ² , Katsumi Yoshizawa ² , Yasunori Arono Tomomatsu ³ , Hiroyuki Tsuda ¹	The wavelength selective external cavity laser using an InAs quantum dot gain chip and an arrayed-waveguide grating for T-band optical	

G-2	Gain Chip and an Arrayed–Waveguide Grating for T–band Optical Communication	Tomomatsu", Hiroyuki Tsuda"	A	gain chip and an arrayed-waveguide grating for T-band optical
		¹ Keio University, ² Pioneer Micro Technology Corporation, ³ Koshinkogaku Corporation		communication is proposed. The output wavelength can be tuned fr 1041.8 nm to 1090.5 nm.
0-2	1 × 2 Wavefront Control Type Compact Silicon Wavelength Selective Switch	Fumi Nakamura, Kyosuke Muramatsu, Hiroyuki Tsuda	Group B	A 16-channel 1 \times 2 wavefront control type wavelength selective switch with 200-GHz channel spacing on a silicon substrate is designed. A two-
		Department of Electronics and Electrical Engineering, Faculty of science and technology, Keio University		step etched rib structure is adopted in order to reduce loss in the boundary between the slab and the arrayed-waveguide.
	Development of standard high speed silicon optical modulator on 300mm CMOS line and high-efficiency modulator design	Guangwei Cong, Yuriko Maegami, Morifumi Ohno, Makoto Okano, Koji Yamada		The well-established PDK will be the key for an advanced Si photonics foundry to achieve efficient design and mass production, which is believed as the core competence for industry service. For such a purpose, we are
		National Institute of Advanced Industrial Science and Technology (AIST)		developing the standard high-speed silicon modulator for AIST SC 300mm line and continuing to invent the design for better performance.
G-5		Yuriko Maegami, Makoto Okano, Guangwei Cong, Morifumi Ohno and Koji Yamada	Group B	We propose and design a highly efficient fiber coupling structure for Si wire waveguides consisting of a Si inverted taper and a CMOS-compatible SiN waveguide. A small SiN waveguide with a 310 nm-square core can
u J		National Institute of Advanced Industrial Science and Technology (AIST)		provide low-loss and low-polarization-dependent fiber-SiN coupling ar SiN-Si mode conversion.
	Waveform Measurement Technique for Optical Phase/Frequency– Modulated Signals	Hidemi Tsuchida		A novel technique is proposed and demonstrated for measuring the temporal waveforms of optical phase/frequency-modulated signals based
		National Institute of Advanced Industrial Science and Technology (AIST)		on the delayed self-heterodyne method with a delay time much shor than the modulation period.
6-7	Ecosystem of photonic component manufacturing aimed by PHOENICS	Haruhiko Kuwatsuka, Koji Yamada, Hitoshi Kawashima, Isao Matsushima, Shu Namiki		An AIST consortium, PHOtonics ENgineering Inovation ConSortium (PHOENICS), is discussing the construction of an ecosystem for the manufacturing of photonics components using so-called "virtual fab
G-7		National Institute of Advanced Industrial Science and Technology (AIST)		system", covering domestic Si-photonics foundry service of 300mm Si wafer product line in AIST Super Clean Room (SCR).