Transmission Electron Microscopy of Interface Phenomena in Functional Nanomaterials

Wolfgang Jaeger

Institute for Materials Science, Christian-Albrechts-University of Kiel, 24143 Kiel, Germany EU
e-mail wolfgang.jaeger@tf.uni-kiel.de

High-resolution imaging and spectroscopic techniques of advanced transmission electron microscopy (TEM) play a crucial role in characterizing the structure-property relationships of inorganic functional materials and interfaces. Three areas illustrating the superior potential of these methods will be addressed:

(i) Quantitative precision analyses by aberration-corrected high-resolution TEM of growth and interface phenomena for a (PbS)$_{1.14}$NbS$_2$ chalcogenide misfit compound with incommensurate interfaces; 1,2

(ii) Microstructure analyses of growth and doping phenomena by TEM and by scanning (S)TEM in combination with energy-dispersive X-ray spectroscopy of ZnO 3 and In$_2$O$_3$ 4 semiconductor nanowires and in situ TEM studies of melting phenomena of metallic cores in ZnO nanotubes 5;

(iii) Applications of imaging and spectroscopic methods of TEM and STEM in developing novel concepts for fabricating multi-junction III-V semiconductor solar cells on Ge cells and on Si cells 6-9 that are used in concentrator photovoltaics.

It is my pleasure to acknowledge the collaborations and the contributions of all my colleagues mentioned in the references.

